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Preface 

A few years ago, Philippe Boulanger asked me to suggest someone to 
write a "Mathematical Visions" column in Pour Ia Science. That's the 
French translation of Scientific American; Philippe is the editor. I first 
came across that magazine in my teens, and for me the high point was 
Martin Gardner's "Mathematical Games" column. When Gardner ceased 
writing it, the column eventually metamorphosed into A. K. Dewdney' s 
admirable "Computer Recreations". The change is perhaps symbolic of 
our times. But in France, the idea that computers are here to replace 
mathematics was resisted, and "Mathematical Games" lived on, in 
tandem with "Computer Recreations", under the name "Visions 
mathematiques". That fits my world-view: computing and mathematics 
have a symbiotic relationship, each needing the other. Anyway, the 
anchorman of the column had departed for pastures new, and Philippe 
was looking for a replacement. 

Did I know of anyone suitable? Of course I did, and modestly offered 
my advice. " Me. " 

He took it- with, I suspect, a few qualms. Two years later, the column 
has found its own identity and settled into its own style. I write it in 
English, and Philippe translates it (with considerable skill and also 
considerable licence) into French. I try to come up with puns that will 
work in French: for instance, "the twelve games of Christmas". That 
translates as "les douze jeux de Noel", whereas "the twelve days of 
Christmas" is "les douze jours de Noel". And nowadays, whenever I 
encounter an interesting piece of mathematics, one part of my mind is 
thinking "I wonder if I could explain that in Pour Ia Science . . .  ?" It offers 
a very different perspective; and on at least one occasion an idea that 
I had when thinking about "Visions Mathematiques" turned out to be 
useful in serious research. 

Anyway, here it is: Game, Set, and Math, a selection of twelve articles 
that present serious mathematics in less than serious fashion. I've edited 
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them, updated them, and put the English puns back. People sometimes 
try to sell the idea that "mathematics can be fun". I think that gets the 
emphasis wrong. To me, mathematics is fun, and this book is a natural 
consequence of the way I approach the subject. 

Mind you, I can understand why most people find that statement 
baffling. To see why mathematics is fun, you have to find the right 
perspective. You have to stop being overawed by symbols and jargon, 
and concentrate on ideas; you have to think of mathematics as a friend, 
not as an enemy. I'm not saying that mathematics is always a joyous 
romp; but you should be able to enjoy it, at whatever level you operate. 
Do you enjoy crossword or jigsaw puzzles? Do you like playing draughts, 
or chess? Are you fascinated by patterns? Do you like working out what 
"makes things tick"? Then you have the capacity to enjoy mathematical 
ideas. And, perhaps, if you do enjoy them, you might even become a 
mathematician. 

We could do with more mathematicians. Mathematics is fundamental 
to our lifestyle. How many people, watching a television programme, 
realize that without mathematics there would be nothing to watch? 
Mathematics was a crucial ingredient in the discovery of radio waves. 
It controls the design of the electronic circuits that process the signals. 
When the picture on the screen rolls up into a tube and spins off to reveal 
another picture, the quantity of mathematics that has come to life as 
computer graphics is staggering. 

But that's mathematics at work. What this book is about is the flip 
side: mathematics at play. 

The two are not that far apart. Mathematics is a remarkable sprawling 
riot of imagination, ranging from pure intellectual curiosity to nuts-and­
bolts utility; and it is all one thing. The last few years have witnessed 
a remarkable re-unification of pure and applied mathematics. Topology 
is opening up entire new areas of dynamics; the geometry of multi­
dimensional ellipsoids is currently minting money for AT&T; obscure 
items such as p-adic groups turn up in the design of efficient telephone 
networks; and the Cantor set describes how your heart works. Yesterday's 
intellectual game has become today's corporate cash-flow. 

However, what you'll find here is the playful side of mathematics, 
not the breadwinning one. Some items are old favourites, some are hot 
off the press. Most chapters include problems for you to solve, with 
answers at the end; there are things to make and games to play. But 
there's a more serious intention, too. I'm hoping that at least some of 
you might be inspired to find out more about the remarkable mental 
world that lies behind the jokey presentation. The ideas you will encounter 
all have connections with real mathematics - though you might be 
forgiven if you didn't see through the heavy disguise. "Mother Worm's 
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Blanket" is a problem in geometric measure theory, and "The Drunken 
Tennis-Player'' is about stochastic processes and Markov chains. "Parity 
Piece" introduces algebraic topology; "The Autovoracious Ourotorus" 
leads to coding theory and telecommunications. On the other hand, I 
can assure you that "Close Encounters of the Fermat Kind" has nothing 
whatsoever to do with space travel or the motion picture industry. 

Or does it? Wait a minute . . .  

Ian Stewart 
Coventry 
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Mother Worm's Blanket 

"Bother!" said Mother Worm. 
"Something the matter, dear?" 
"It's our sweet little Wermentrude. I know I shouldn't criticize the 

child, but sometimes - well - her blanket's come off again! She'll be 
chilled to the bone!" 

"Anne-Lida, worms don't have bones." 
"Well, chilled to her endodermic lining, then, Henry! The problem is 

that when she goes to sleep, she wriggles around and curls up into almost 
any position, and the blanket falls off." 
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"Does she move once she's asleep?" 
"No, Henry, she sleeps like a log. " 
She even looks like a log, thought Henry Worm, but did not voice the 

thought. "Then wait until she's asleep before you cover her up, dearest." 
"Yes, Henry, I've thought of that. But there is another problem." 
"Tell me, my pet. " 
"What shape should the blanket be?" 
It took a while for Henry to sort that one out. It turned out that Mother 

Worm wanted to make a blanket which would completely cover her 
worm-child, no matter how she curled up. Justtheworm, you understand: 
not the area she surrounds. The blanket can have holes. But, being thrifty, 
Mother Worm wished the blanket to have as small an area as possible. 

"Ah," said Father Worm, who -as you will have noticed-is something 
of a pedant. "We may choose units so that the length of the little horr- . . .  
dear little Wermentrude is 1 unit. You're asking what shape is the plane 
set of minimal area that will cover any plane curve of length 1. And no 
doubt you also wish to know what this minimal area is." 

"Precisely, Henry. " 
"Hmmmmmmmm. Tri-cky . . .  " 
When you start thinking about Mother Worm's blanket, the greatest 

difficulty is to get any kind of grip. The problem tends to squirm away 
from you. But as Henry explained to his wife - in order to distract her 
attention from his inability to answer the question - there are some 
general principles that can form the basis of an attack. Suppose that we 
know where some points of the worm are: what can we say about the 
rest? He pointed outtwo such principles (box 1.1): they depend upon the 
fact that the shortest distance between two points is the straight line 
joining them. 

"Excellent," said Father Worm. "Now, Anne-Lida my dear, we can 
make some progress. An application of the Circle Principle shows that a 
circle of diameter 2 will certainly keep Wermentrude warm. Lay the 
centre of the blanket over Baby's tail, my dear: the rest of her cannot be 
more than her total length away! How big is the blanket? Well, a circle of 
diameter 2 has an area of 1t, which you'll recall is approximately 
3.14159 ... . " 

"That's enough, Henry! I've already thought of something much 
better. Suppose that you (mentally!) chop Wermentrude into two at her 
mid-point. Each half lies inside a circle of radius ! centred on her mid­
point. If I place a circular blanket of radius ! - that is, diameter 1- so that 
its centre lies over Baby's mid-point, it will cover the dear little thing." 

What's the area now? Remember pi-r-squared? 
In fact this is the smallest circle that will always cover Baby, because if 

she stretches out straight she can poke out of any circle of diameter less 
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Box 1.1 Blanket Regulations 

The Circle Principle Suppose we have a portion of worm, of lengthL, and 
we know that one end of it is at a point P. Then that portion lies inside a 
circle of radius L, centre P. The reason: every point on the portion is distance 
L or less away from P, measured along the worm. The straight line distance 
is therefore also L or less. But such points lie inside the circle of radius L. 

The Ellipse Principle Suppose we have a portion of worm, of length L, 
and we know where both ends are. Let the ends be at pointsP and Q in the 
plane. Form a curve as follows. Tie a string of length L between P and Q, 
insert the point of a pencil, and stretch the line taut. As the pencil moves, 
it describes an ellipse whose foci are P and Q. The points inside this ellipse 
are those points X for which P X+ XQ is less than or equal to L. Therefore 
every point on the portion of worm concerned lies inside this ellipse 
(figure 1 .1) .  

p 

PX = L : Circle PX + XQ = L : Ellipse 

1.1 A portion of worm of length L, one point P of which is known, lies inside a 
circle of radius L, centre P. If two points P and Q are known then the portion lies 
inside an ellipse with P and Qas foci, consisting of all points X such that PX + XQ 
=L. 

than 1. But might a shape different from a circle be more economical? "It 
had better be, " groaned Father Worm, who would have to pay for the 
blanket, as he retired to his study. Two hours later he emerged with 
several sheets of paper and announced that Anne-Lida's proposal, a 
circle of diameter 1, is at least twice as large as is necessary. 
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"Good news, my dear. A semicircle of diameter 1 is big enough to cover 
Baby no matter how much the little pest - er, pet - squirms before 
snoozing. " 

That cuts the area down even more: to what? 
As I said, Henry Worm is a pedant. He won't say anything like that 

unless he's absolutely certain it's true. So he hasn't just spent his time 
doing experiments with semicircles: he has a proof that the unit semicircle 
(a semicircle of diameter 1) always works.lt isn't an easy proof, and if you 
want to skip it I wouldn't blame you. But proof is the essence of 
mathematics, and you may be interested to see Father Worm's line of 
reasoning. If so, it's in box 1.2. 

"Very clever, Henry, " sniffed Anne-Lida. "But I think the same idea 
shows that you can cut some extra pieces off the semicircle. You see, 
when P and Q are closer together than b, the distance between X and Y 
is less than 1. That must leave room for improvement, surely?" 

"Hrrrumph. You may well be right, my dear. But it gets very 
complicated to work out what happens next. " And Henry rapidly 
changed the topic of conversation. My more persistent readers may wish 
to pursue the matter, because Anne-Lida is right: the unit semicircle is not 
the best possible shape. Indeed, nobody knows what shape Baby Worm's 
blanket should be. The problem is wide open. Remember, it must cover her 
no matter what shape she squirms into;and you mustgive aproofthat this 
is the case! If you can improve on�, let me know. 

Later that evening, Henry suddenly threw down his newspaper, 
knocking over a glass of Pupa-Cola and soaking the full-size picture of 
Maggot Thatcher on the front page. " Anne-Lida! We've forgotten to ask 
whether a solution exists at all!" You can't keep a good pedant down. But 
he has a point. Plane sets can be a lot more complicated than traditional 
things like circles and polygons. The blanket may not be convex: in fact 
it might have holes! For that matter, what do we mean by the "area" of 
a complicated plane set? 

"My God," said Henry. "Perhaps the minimal area is zero!" 
"Don't be silly, dear. Then there would be no blanket at all!" 
Henry poured a replacement and sipped at it with a superior smirk. 

"Anne-Lida, it is obviously time I told you about the Cantor set. " 
"What have those horrible horsey snobs got to do with . . .  " 
"Cantor, my dear, not canter. Georg Cantor was a German 

mathematician who invented a very curious set in about 1883. Actually, 
it was known to the Englishman Henry Smith in 1875 - but 'Smith set' 
wouldn't sound very impressive, would it? To get a Cantor set you start 
with a line segment of length 1, and remove its middle third. Now 
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A line that meets Wermentrude at some point or points, but such that she 
lies entirelyononeside of it,is called a support line(figure 1 .2). Support lines 
exist in any direction. Just start with a line pointing in that direction and 
slide it until it first hits the worm. Notice that support lines may meet the 
worm in more than one point. 

1.2 Support lines. 

First, suppose that every support line meets Wermentrude in exactly 
one point. Then she must be curled up in a closed convex loop, perhaps 
with other bits of her inside (figure 1 .3). Suppose she touches a support line 
at a point P. Then all points on the loop are at a distance � or less from P, 
measured along the worm; hence also measured in a straight line. So are the 
other points inside the loop. Therefore Wermentrude lies inside the circle 
of radius � centre P. But she also lies on one side of the diameter of this 
circle formed by the support line. Thus she lies inside a unit semicircle. 

Alternatively, some support line meets Wermentrude in at least two 
points P and Q. These points divide her into three segments A, B, C of 
lengths a, b,c, wherea+b+c = 1 (figure 1 .4). The distance betweenP and Q 
is at most b because segment B joinsPto Q. By the Circle Principle, segment 
A lies inside a circle centre P radius a; but it also lies on one side of the 
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1.3 If every support line meets the worm in a single point, then the worm 
determines a convex loop of perimeter less than or equal to 1 and hence lies inside 
a unit semicircle. 

support line, so it actually lies inside a semicircle of radius a. Similarly 
segment C lies inside a semicircle of radius c. 

p Q 

1.4 If a support line meets the worm in two points, then the worm lies inside a 
figure obtained by overlapping two semicircles and a semiellipse. 
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Q y 

-----

Q y 

Q y 

1 .5 There are three possible arrangements of the semicircles and the semiellipse. 
In all three cases the distance XY is at most 1 .  Therefore the semicircle on XY as 
diameter (dotted) fits inside the outer unit semicircle. So does the worm .  
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What about segment B? By the Ellipse Principle, it lies within an ellipse 
whose foci are at P and Q, traced by stretching a string of length b. Because 
of the support line, B actually lies inside a semiellipse (half an ellipse). 

Thus the entire worm lies inside a rather complicated figure formed by 
overlapping two semicircles and a semiellipse. Let X andY be the extreme 
points of this figure on the support line. There is a minor complication now. 
The point X may be either on the semicircle centre P or the semiellipse; 
similarly Y may be either on the semicircle centre Q or the semiellipse. 
However, in each case it is not hard to show that the distance between X 
andY is 1 or less (figure 1 .5). 

Now, the ellipse is "flatter'' than a circle; so both semicircles and the 
semiellipse fit inside a semicircle whose diameter is XY. Since XY is 1 or 
less, Wermentrude fits inside a unit semicircle. 

remove the middle third of each remaining piece. Repeat, forever. What 
is left is the Cantor set." (Figure 1.6) 

"I don't see how there can be anything left, Henry." 
"Oh, but there is. All the end-points of all the smaller segments are left, 

for a start. And many others. But you are right in one way, my dear. What 
is the length of the Cantor set? " 

"Its ends are distance 1 apart, Henry." 
"No, I meant the length not counting the gaps." 

._ ______________________________________________ �StageO 

._ _________ Stage 1 

• • • • • • ••--_..stage 2 

......_. .,...... Stage 3 

�� -�Stage 4 

__ __ _ __ Cantor set 

1.6 Construction of the Cantor set by removing middle thirds. Its length is zero, but it 
contains infinitely many points. 
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"I have no idea, Henry. But it looks very small to me. The set is mostly 

holes." 
"Yes, like Wermentrude's sock." 
"Are you criticizing me? I'm going to dam her sock tomorrow! Of all 

the ... " 
"No, no, my dear; nothing was further from my mind. Hrrumph. 

The length reduces to � the size at each stage, so the total length after 
the nth stage is <hn. As n tends to infinity, this tends to 0. The length of 
the Cantor set is zero." Anne-Lida worked out the first few powers 
of j on her calculator- it wasn't a pocket calculator because worms don't 
have pockets - and nodded in agreement. 

"Now the Cantor set, despite being mostly holes, has a remarkable 
property, " Henry continued relentlessly. "Given any number between 0 
and 1, there are two points in the Cantor set whose distance apart is 
exactly equal to that number. Er- I don't think you'd want to see a proof, 
my dear, so let us merely assume the result is true, yes? Good. Now, 
suppose that Baby can only curl up into rectangles ... " 

"Henry, you know very well she's as wriggly as a baby worm ... " 
"Pretend she's been playing tailball and is very stiff in the joints." 

Wermentrude, I must add, goes to a non-sexist equal opportunity 
awormative action school which discourages differences between boy 
and girl worms - not that you'd notice - and girl worms play tail ball just 
like the boys. Nevertheless, Anne-Lida objected. 

"You know very well worms don't have joints, Henry!" 
"Oh, for heaven's sake! Pretend that they do, all right? Just to please 

me!" 
"Very well, " said Anne-Lida huffily. "Since you insist." 
"Thank you. Because Wermentrude's length is 1, the height and the 

width of the rectangle are between 0 and 1. So I can find two points in the 
Cantor set whose distance apart is equal to the height, and two more 
whose distance apart is equal to the width. Now I consider the Cantor 
tartan." 

"Cantor isn't a Scottish name, Henry!" 
"Very well, the MacCantor tartan. I take a set of horizontal lines of unit 

length, spaced vertically according to the Cantor set, together with a set 
of vertical lines, spaced horizontally the same way (figure 1.7). Now, in 
the horizontal set I can find two lines whose distance apart is equal to the 
height of the rectangle, and in the vertical set two lines whose distance 
apart is equal to its width. So - as J. R. Kinney noticed in 1968 - the 
MacCantor tartan can be placed so that it covers Baby Worm's rectangle." 

"You mean the perimeter, not the inside of the rectangle." 
·'Naturally. The blanket must cover Wermentrude, not the space she 

encloses." 
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h 

w 

1 .7 The MacCantor tartan can cover any rectangle, because the Cantor set contains 
points distance hand w apart for all hand w. 

"That's not a blanket, Henry: it's a net." 
"If you wish, I shall rename this chapter 'Baby Eel's Net'. But then your 

name won't be mentioned ... " 
"No, no, Henry. I now realize it is a cellular blanket." 
"Excellent. It also has area zero. The horizontal part has area OX 1 = 0, 

and so does the vertical part, because the Cantor set has length 0." 
"So for rectangular worms," said Anne-Lida, "there exists a blanket of 

area zero that will cover them all! What a bizarre result!" She paused. 
"But of course that's because rectangles are very special." 

"Well, yes and no," said Henry Worm. "I've been reading about the 
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problem, and i t  turns out that in 19 70 D. J. Ward constructed a blanket of 
area zero capable of covering any polygonal worm. A worm made up of 
finitely many straight line segments, that is. The blanket is an incredibly 
messy tangle, of course - mostly holes." 

"Curio user and curiouser, my dear. And what of smooth worms, like 
our lithe and flexible Wermentrude?" 

"Well, for a while mathematicians began to wonder whether there 
might exist a zero-area universal blanket for smooth worms- speaking 
in the vermicular, of course. But in 19 79 J. M. Marstrand proved that no 
blanket of area zero can cover all smooth worms." 

"Remarkable. It must have taken some very difficult geometry to 
prove that." 

"I gather the main idea was to use the concept of the entropy of a totally 
bounded metric space, my pet." 

"Fascinating, Henry! Do tell me more." 
'Well-hrrrumph-I don't think you'd really wantto know about that, 

Anne-Lida. Ergodic theory is kind of tricky ... " 
"You don't know, do you Henry?" 
"Well ... No. But at any rate, we know that the minimal area for 

Baby's blanket must be greater than zero." 
Mother Worm can be a pedant too. "Do we, though, Henry? I mean, 

might there not be a blanket of area � that works, and one of area { , and 
one of area � , and so on-areas greater than zero but becoming as small 
as we please? Then the minimum area would be zero, but it wouldn't 
actually correspond to a blanket." Can you think of a simple problem about 
minimal areas for which this kind of thing happens? Here's a hint: Mother 
Gnat's tent. 

But Father Worm knew when he was beaten, and was already talking 
about the analogous problem in three dimensions: Baby Worm's sleeping­
bag. What is the minimal volume that will hold a worm of length 1 in 
ordinary three-dimensional space? And that problem is virtually 
unexplored. Can you make any progress worming your way towards a 
solution? 

ANSWERS 

The circle of radius r= � has area 7tr 2= 7tC)2= :, which is about 0.785. 
Easy! Yes, but this is just the worm-up problem ... 

Halving that to get a semicircle leads to � , or about 0.393. 
Here's an example of an area-minimizing problem which has solutions 

of arbitrarily small non-zero area, but does not have a solution with area 
zero. Mother Gnat is making a tent so that her daughter Gnathalie can go 
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G 

1.8 Mother Gnat's tent, a problem with no minimal solution. 

camping. Gnathalie is tiny, no more than a point; she always sleeps 
hovering a little way off the ground. The tent must cover her head to keep 
the rain off and reach down to the ground to keep out draughts. What is 
the smallest area of tent that will do the job? 

The answer is that any area greater than zero will work, but zero itself 
will not. 

To see why, imagine a point gnat G, some distance- which we may 
take to be 1 unit-above a plane. The problem of Mother Gnat's tent boils 
down to this: what is the smallest area of a surface whose boundary lies 
in the plane, and which passes through G? Consider a sharp conical 
surface (figure 1.8) whose base is a circle of radius r units. Then the 
surface area of the cone is1tr, and we can make this as small as we want 
by choosing r small enough. For instance if r = 0.000000001 then the area 
is1tr = 0.00000000314 ... . 

But to get zero area we must let r = 0, and then the cone becomes a line 
segment joining G to the plane. But a line segment isn't a surface! 
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This example shows that area-minimizing problems may not have 

solutions: that is, the "minimal " area may not be attainable. 
Baby Worm's sleeping-bag: do you want to minimize the surface area 

or the volume?Yourchoice! Similar arguments can get you to a hemisphere 
of radiusr = } , with volume inr 3 

= 1;, about 0.262; and surface area 
37tr 2 (why?) = !1t, about 2.356. But it must be possible to improve on 
those figures. 
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The tennis season has started up again. 
A few weeks ago, I spent the afternoon at the local tennis-club, playing 

an enjoyable match with my friend Dennis Racket. He won in straight 
sets, (r-3, (r-1, (r.. 2. Afterwards, as we sank a few beers in the bar, a thought 
struck me. 

"Dennis: how come you always beat me?" 
"I'm better than you, old son." 
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"Yes, but you're not that much better. I've been keeping score and I 

reckon that I win one-third of the points. But I don't win one-third of the 
matches!" 

"Let's face it, you don't win any matches against me." He took a quick 
swig at his beer. "That's because you don't win the crucial points, the 
ones that really matter. I mean, remember when you were leading 40-30 
with the set at three games to two? You could have levelled the score at 
three all. Instead, you ... " 

"Served a double fault. Yes, Dennis, I know all about that. But I reckon 
I still win about one in three of the crucial points! No, there must be 
another explanation." 

"I'd like another beer, that's for sure," said Dennis. "My round. I'll be 
right back." He heaved himself to his feet and began to negotiate his way 
through the crowd towards the bar. I heard him shouting over the 
hubbub. "Elsie! Two pints of Samuel Smith's and a packet of peanuts!" 
With a glass in each hand, he began to make his way back. There were so 
many people that he went two steps sideways for every step forwards. 

Then it hit me. 
That's why Dennis always wins! 
He sat down, and I decided to share my sudden insight. "Dennis, I've 

worked it out! Why you always win! I was watching you coming back 
from the bar, and I suddenly thought: drunkard's walk!" 

"Actually, my son, they stagger. Anyway, I've only had two pints!" 
I hastened to reassure him that my choice of phrase was nothing 

personal. The drunkard's walk -less colourfully called the random walk 
- is a mathematical concept: the motion of a point which moves along a 
line, going either left or right, at random. Or on a square grid, taking steps 
randomly north, south, east, or west. In 1960 Frederik Pohl wrote a 
science fiction story called Drunkard's Walk, and he described it like this: 

Cornut remembered the concept with clarity and affection. He had 
been a second year student, and their house-master was old Wayne; 
the audio-visual had been a marionette drunkard, lurching away 
from a doll-sized lamp-post with random drunken steps in random 
drunken directions. 

To simulate the simplest random walk, all you need is a 30 em ruler and 
two coins. One coin acts as a marker, the other as a random number 
generator. Place the marker coin on the ruler at 15 em. Toss the other one. 
If it comes down "heads", move the marker coin 1 em to the right; if 
"tails", move it left (figure 2. 1). 

According to probability theory, after n moves you will be on average 
a distance ...Jn em away from the middle. (Try it!) Despite this, your 
chances of eventually returning to the middle are 1 (certainty ). On the 
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other hand, on average it takes infinitely long to get there. Random walks 
are subtle things. With a random walk on a square grid, you still have 
probability 1 of returning to the centre; but in three dimensions the 
probability of getting back to the centre is about 0.35. A drunkard lost in 
a desert will eventually reach the oasis; but an inebriated astronaut lost 
in space has roughly a one in three chance of getting home. Maybe they 
should have told ET that. 

2.1 Apparatus for a random walk. 

tail 

Years ago a probability theorist told me that the lowest dimensional 
space in which the chances of getting home are less than 1 is a space of 2� 
dimensions, but I've never quite worked out what he meant by that. 

As you can see, mathematicians have done a lot of work on random 
walks. They're important. For example, they model the diffusion of 
molecules under random collisions in gases and liquids. And they can be 
used to analyse games of chance. 

Such as tennis. 
Dennis said he couldn't see the connection. 
"But there is one," I said. "Lend me your ears and I'll try to explain 

why. Let's start with something simpler. Suppose Angus and Bathsheba 
take it in turns to toss a coin. If it comes up heads, Angus gets one point. 
Tails, and Bathsheba gets the point instead. Angus wins if he gets three 
points ahead of Bathsheba; and Bathsheba wins if she gets three points 
ahead of Angus. If neither has won after ten tosses, the game is a draw. 
Got that?" 

"It's not exactly physically or intellectually challenging, this game, " 
he muttered into his beer. 

"Right then, genius: what is Angus's chance of winning?" 
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"Fifty-fifty? Oh, no, they can draw, too. One chance in three." 
"I see. He can either win, draw, or lose: you think each is equally likely. 

Just like tossing a coin: it can either land heads, tails, or on edge, so the 
chance of it landing on edge is one in three." 

Dennis didn't like my sarcastic tone. "All right, cleverclogs: what is his 
chance of winning?" 

"I don't know, " I said. 
"Ha! " 
"But if you'll pass me that napkin I'll work it out." And I started to 

draw a diagram (figure 2. 2). 
'What's that?" 
"I'm marking Angus's total score along the top, starting at 0, and 

Bathsheba's down the side. Then I'm going to work out how many ways 
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2.2 Angus and Bathsheba toss a coin. 
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the game can reach each legal position. Then I'll count up how many of 
them are wins for Angus. Well, that's the gist of it, but actually I'll have 
to be more careful: I'll come to that in a moment." 

I wrote a line of 1 's along the top and down the side. 
'Why all the 1's?" 
"They mean-for instance-that there's only one way for Angus to go 

3:0 up. He has to win all of the first three tosses." 
"Ah." 
"But there are two ways to get to a score of 1:1." 
"I see that. Either Angus or Bathsheba wins the first toss, but then they 

lose the second." 
"Exactly. In other words, the score on the previous turn is either 1:0 or 

0:1 in Angus's or Bathsheba's favour - corresponding to the squares 
above and to the left of the 1:1 square. Each of those contains a 1, and we 
just add the two numbers up. 

"The same method lets us work out how many ways the game can 
reach any given position, say m:n. The previous position was either 
( m - 1) : n or m : ( n- 1), and those are the positions above and to the 
left. Add them up, and write it in. Of course you have to work 
systematically through the possible scores. For instance, the only reason 
I know I can put 9 in the 3:2 square is that I've already got 3 in the 3:1 and 
6 in the 2:2 positions, OK?" 

"Got you." 
"And you don't include squares where one player has already won, 

because the game stops on those. The number at 3:5, for instance, is not 
the sum of the numbers at 3:4 and 2:5, because at 2:5 Bathsheba has won 
and the game stops." 

"It's getting complicated, old lad." 
"Nonsense, you just have to be systematic and take the rules of the 

game into account. Now,Angus wins if the score is 3:0,4:1,5:2,or 6:3,and 
Bathsheba wins for0:3, 1:4, 2:5, or 3:6. I'll mark those boxes with a shaded 
border." 

"What about 7:4?" 
"I said the game stops after ten tosses. That happens at scores of 4:6, 

5:5, and 6:4. I'll put a heavy black border on them. There!" 
We contemplated the diagram. 
"Angus wins in 1 +3+9+27 ways, " said Dennis. "That's 40. He loses in 

40 ways, and the game is drawn in 324. That makes 40+40+324 = 404 
possibilities altogether. So his chance of winning is !, which is 0.0990099. 
About one chance in ten. That sounds unlikely to me, you must have 
made a mistake." 
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"Not quite," I said. "You're making a mistake. The same one as before: 
you're assuming each case is equally likely. But because the games go on 
for different numbers of turns, they aren't equally likely." 

I bought two more beers and while we consumed them I pointed out 
that Probability Theory is founded on two bashic prinshiples. 

1 To get the probability of a set of distinct events you add the 
individual probabilities. 

2 To get the probability of two independent events happening in turn 
you multiply their probabilities together. 

For instance, if you throw a fair die then the probability of each score 
in the range 1 to 6 is �, because all scores are equally likely. The 
probability of throwing either a 5 or a6is (�) + ( �) = �.On the other hand, 
if you throw two dice, say a red one and a blue one, then the probability 
that the red one is 5 and the blue one is 6 is(!) x (!) = h, . 

" To get the right answer," I told Dennis, "you just apply the rules. At 
each throw, Angus has a probability� of winning, and so does Bathsheba. 
So each move one square across or down the diagram multiplies the 
probabilities by � . The chances of Angus winning 3:0 are(�) x ( �) x ( �), 
or� .The chances of him winning4:1 are not !,butt,because two more 
tosses are involved. So his chances of winning are 

I 3 9 27 
8 + 32 + 128 + 512 

which comes to���, or roughly 0.3418." 
Dennis looked pleased with himself. 
"I told you he had a one in three chance of winning," he said. Then he 

added "Ouch!" as I kicked him. 
"As a check on the calculation, Dennis, you will observe that the 

chances of a draw are :0�4, the chances of Bathsheba winning are �J�, and 
the sum of the three fractions is 

175 324 175 1 
512 + 1024 + 512 = • 

as it must be if I haven't made any mistakes." 
''You're a genius. Now, what's all this got to do with tennis?" 
"It's the same thing, only with different rules. Tennis is a series of 

points, leading to games, leading to sets, leading to a match. To keep it 
simple, suppose Angus and Bathsheba play one game of tennis. On each 
separate point, Angus either wins or loses; and Bathsheba loses or wins. 
The winner of the game is the first player to get four points. Unless the 
score gets to three all, in which case . .. " 

"Three all? Three all? What kind of tennis score is three all?" 
"Deuce. Look, tennis has this incredibly silly scoring system that goes 

15, 30, 40, game instead of 1, 2, 3, 4, that's all. The '40' is really '45' but 
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people got lazy; I suppose a game is really 60. There must have been a 
reason originally, but I have no idea what it was and it's just traditional 
now. 

"When the score gets to deuce, the game continues until one or other 
player gets two points ahead. 

"You can represent a tennis game on a diagram just like the one we 
drew for the coin-tossing game. " I went over to the bookshelf, came back 
with a book of tennis scores, and picked one at random. "Look, here's the 
fifth game of the second set of the 1987 men's singles final at Wimbledon. 
Pat Cash v. Ivan Lendl. Cash was leading 3-1 in the second set and one 
set to love. Lendl served and lost. Here's how the scoring went." 
(Figure 2. 3) 

"Oh, I see. It's quite clever, the way a deuce game chases off down that 
funny zig-zag." 

Cash 

0 15 30 40 

2.3 Pat Cash and Ivan Lendl play tennis: Lendl to serve. 



22 Game, Set, and Math 

Angus 

0 15 30 40 game 

0 

al 

l" 
2 3 

.0 Q) .s:: 30 3 6 "' .s:: 
1ii 
ro 40 

game 

2.4 Combinatorics of a game of tennis. 

" The same thing comes up in tie-breaks too: you'll see when I get that 
far. In principle a game can go on forever. Of course, the chances of that 
are zero. 

"Anyway, you can assign numbers to the squares in justthe same way: 
each square contains the sum of the numbers immediately above and to 
the left, unless those squares represent the end of a game, which only 
matters in a deuce game (figure 2. 4). 

"Of course, the chances of a given player winning a point aren't � any 
more. Better players win points more often, as I was complaining when 
we first sat down. Now, to keep it simple, I'm going to assume that the 
chance is always the same on each point." 

Dennis started to object. "But . . .  " 
"But players have more chance of winning if it's their serve - yes, I 

know that. Let's keep it simple to start with, though. The same method 
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will take care of different probabilities depending who's serving, but it  
gets very very complicated if you do that. 

"So Angus wins any given point with probability p, say,and loses with 
probability q, which must be equal to 1 - p .  

"Now every horizontal move is a point won by Angus, so has 
probability p, whereas a vertical move has probability q. For instance, 
the chance that Angus wins game-30 is 10p4 q2 because the game-30 
square contains the number 10, and is four squares horizontally and 
two vertically away from the starting-point. His total chance of winning is 4 4 4 2 p + 4p q + 1 Op q , plus whatever happens when the game goes to deuce. 

"Deuce scores complicate things a bit . But see how the numbers 
representing wins for Angus run down the diagonal: 10, 20,40 , 80, 160, ... 
doubling all the time. We have to add up an infinite series 

4 2 5 3 6 4 75 lOp q + 20p q + 40p q +SOp q + ... 

and then add on p 4 + 4p 4 q. Now the infinite series is 
4 2 2 2  3 3  lOp q (1 + 2p q + 4p q + 8p q + ... ) 

and the expression in brackets is a geometric progression." 
"I did those at school!" 
"Can you remember what the sum is?" 
"No. Never saw much point to that stuff." 
'1+r+r2+r 3+ ... =(1�r)" Provided -1 < r< l,of course.Now you 

see how useful it is! Frankly, I'm amazed you play tennis so well, not 
knowing how to sum a geometric progression. Anyway ... Each term is 
2p q times the previous one, so the expression in brackets is ( 1_1

2 ) • That 
makes Angus's chance of winning exactly pq 

4 4 10p4q2 p +4p q+ l-2pq 

Isn't that beautiful!" 
"Beauty, " said Dennis, "is in the eye of the beholder. Let me buy you 

another beer. You must be thirsty after all those calculations." He 
wobbled to his feet. "I know I am," he muttered, as he took a tentative step 
forward. 

While he was fighting his way back to the bar, I worked out my 
chances of winning a game against him, assuming my chance of winning 
a point was one in three. That made p = �, q = �, and the formula gave 
me a probability of i1 3 = 0 .144. About �. 

"Dennis: if I have a one in three chance of winning each point, I only 
have a one in seven chance of winning a game! No wonder you always 
beat me! The rules of tennis amplify differences between players. I bet the 
ampifli- . . .  amflipi- ... I bet it gets even bigger when you take sets and 
matches into account!" 
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"Very likely, old son. But it's time to go home." 
'Why? I was just getting . . .  " 
"The bar's closing." 
To ease my hangover I spent the next morning working out what 

happens when you take sets and matches into account. The methods are 
just the same as those I've described, so I'll just summarize the results. 

First, let's recall the rules. 
In men's singles, a match consists of a maximum of five sets. A player 

must win at least three sets, and be two sets or more ahead of his 
opponent, except for a score of 3-2. 

To win a set, a player must win at least six games, and be two or more 
games ahead. A set in the position 6-5 or 5-6 continues for a further game, 
and is won if the score goes to 7-5 or 5-7. If a set reaches 6--6 it proceeds 
to a tie-break, except for the fifth set in a match, in which case it continues 
indefinitely until one player is two games ahead. 

A tie-break is much like a normal game. However, the scoring goes 
0, 1, 2, ... , like the games in a set rather than the points in a game. To win, 
you must score at least 7, and be at least two points ahead. 

Before the tie-break rule was introduced, all sets continued until one 
side was two games ahead. In a doubles match on 15 May 1949 
F. R. Schroeder and R. Falkenburg played R. A. Gonzalez and 
H. W. Stewart (all of the USA) and won the first set by the margin of 
thirty-six games to thirty-four! The final score was 36-34, �� 4-6, 6-4, 
19-17, and the match took four and three-quarter hours. 

You can see why the rules were changed. 
The diagrams for a tie-break game, a set with or without a tie-break, 

and a match, are shown in figures 2.5-2.8. The corresponding formulas 
for probabilities of winning are shown in box 2.1. You should be able to 
see how they are derived from the diagrams. Capital P means "probability 
of winning" whatever follows it in brackets. If the play can continue 
indefinitely, the formula includes the sum of an infinite geometric 
progression. 

The rules for women's singles are slightly different. A match can be 
won either two sets to love or two sets to one. Tie-breaks are played in 
every set. You might like to carry out this analysis yourself. 

By fitting all the formulas together you can, in principle, write down 
an explicit expression for the probability of winning a tennis-match. I've 
indicated with arrows in box 2.1 how to do this: substitute for p the 
expression in the box at the tail of the arrow, and one minus this for q. I 
haven't actually carried this procedure out, because the result would be 
enormous. Each single p or q in one formula becomes an entire expression 
from the previous formula, and the complications become horrendous. 
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Angus 
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2.7 Set without tie-break. 
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Box 2.1 Game, set, and match: probabilities of winning 

Game 
p = P(point) , q = 1-p rl 4+4 4 + 

10p4q2 1 
p p q 1- 2pq 

Tie-break 
p = P(point) , q = 1 -p 

7
+7 

7 
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7 2
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7 3
+21 0  

7 4+462p7q5 � p p q p q p q p q 1-2pq 

Set with tie-break 
p = P(game ) , q  = 1-p �lr 

4 p
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Set without tie-break 
p = P(game ) , q = 1-p 

p
6
+6p

6
q +21 p

6
q

2
+56p

6
q
3
+ 11�2:q; r-

Match 
p = P(set with tie-break) , q = 1-p .,, 

p
3
+3p3

q +6p
2
q

2P (set without tie-break ) j 

However, you can substitute values from one formula to the next, and 
I've shown what happens in figure 2.9. This gives a table, and a graph, of 
the probability of winning a men's singles match if your probability of 
winning any individual point is p. 

I showed all this to Dennis the next evening. 
"Should Bathsheba be playing men's singles?" he objected. 
"She's very liberated. She's thinking of changing her name to Boris. 

Now, shut up and listen. Observe that the graph is very flat at each end 
but rises extremely steeply in the middle. With a probability of more than 
0.6 of winning each point, your chance of winning the game is nearly 1. 
The rules of tennis favour the better player." 

He stared at me over his beer, perplexed. "But they should, shouldn't 
they? I mean, the better player ought to have the better chance of 
winning." 
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probability of winning 

point match 

0 0 

0·1 0 

0·2 1 0-22 

0·3 4·5 X 1 0-11 

0·4 4·4 X 1 0-4 

0·5 0·5 

0·6 0·9995 

0·7 0·9999 

0·8 0·9999 

0·9 1 

1 ·0 1 
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2.9 Calculating the winning probability. 

"True." 

0 0·5 
point 

"But you say all this depends on the assumption that the probability 
of winning a point is always the same. That's not very realistic." 

"You're referring to the advantage of serving. " 
"Right! When a player is serving, he stands a much better chance of 

winning the point than when he's receiving-present company excepted, 
of course." 

"Hmph." 
"Shows how important the serve is." 
"I could redo the calculations . . .  " 
"Not on my account. I've got the message. You can apply probability 

theory to tennis. " He sank mockingly to his knees and bowed his head to 
the floor. "I believe, I believe!" 

I ignored his antics. "Mmm, but it might be interesting . . .  You see, the 
way the scoring amplifies any advantage means that each player has a 
chance rather close to 1 of winning his service game-provided his chance 
of winning a point is above �-That tends to act the opposite way, which 
evens the game out again! Where's that pencil? . . .  " 

"Hang on, " said Dennis, heaving himself back into his chair. "Before 
you cover the tablecloth with algebra, answer me one thing. On this 
theory of yours, what chance do you have of beating me?" 
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"Well," I said, "according to my calculations, if I have a� chance of 
winninga pointagainstyou,mychance ofwinningamatch is0.000000027, 
or about one in thirty-seven million." 

"I'd leave the theory just as it is," he said. "It looks perfect to me." 

ANSWERS 

The probability of winning a set in women's singles tennis is P2 + 2p2q, 
where p = P(set with tie-break) and q = 1 - p. 

The graph of how this varies with the probabilityp = P(point) is shown 
in figure 2.10. 
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2.10 Calculating the winning probability for women's singles. 
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The Infinormatics Laboratory 

The phone rang. It was Philippe Boulanger, the editor of Pour la 
Science. "This month's special topic is Large Computer Systems. I want 
you to write something about it for 'Visions Mathematiques'." 

I protested. "That's 'Computer Recreations' !  My column is for people 
who haven't got computers, don't want computers, maybe even detest 
computers . . . " 

'1 know you can do it," he said. "Deadline's Thursday week." And he 
hung up. 
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I broke into a cold sweat, close to panic. I needed help, and I needed 

it fast. I had to pick the brains of an expert. A ray of light . . .  A quick visit 
to my old friend Dr Zebedee J. J. Bunnydew, at Salmigondis Corporation's 
main research centre in the city of Kluzmopodion. That's not as easy as 
you might think, because Kluzmopodion is on the planet Ombilicus, a 
billion light-years (and a few metres) from Earth, in the direction of the 
right eye of the constellation Orion. However, there's a space-time warp 
in one comer of my garden (behind the raspberry canes), which leads 
directly to Ombilicus. This is how I met Dr Bunnydew in the first place : 
I fell through the warp while weeding. Making sure the neighbours 
weren't watching, I stepped through, and hitched a ride to Salmigondis 
Corporation on a passing Bronteosaurus-cart. 

"Large Computer Systems?" said Bunnydew. "I can tell you a lot 
about those. Only I can't." 

"You can only you can't?" 
"Top Secret. Classified government work." He leaned closer. "Quasar 

Wars contract," he whispered. "It's so secret I can't even talk to myself 
about it." "But," he added, "you're in luck. I've got some ideas that are 
so crazy I haven't told the security people about them yet. Large computer 
systems? They don't come any larger than what I'm planning, I can tell 
you ! Follow me!" 

He led the way down a corridor to a tiny room. There was a sign 
pinned to the door, a single symbol : oo. Perhaps it was room 8, and the 
sign had slipped. But I didn't think so. I'd seen that symbol somewhere 
before. 

"This," said Bunnydew in a conspiratorial tone, "is the Infinormatics 
Laboratory." 

Infinor- . . .  Of course ! It was an infinity symbol ! But what the devil was 
infinormatics? I was soon to find out. 

We went in. He opened a drawer and pulled out a length of black 
plastic, about 5 mm wide. There was a double row of metal pins down the 
side. I could see about a metre of the thing; then it disappeared into the 
drawer. 

"It looks like an integrated circuit chip," I said. "But longer." 
"Much longer," he said. "You are looking at one end of the Bunnydew 

Infinite Linear RAM chip - a computer memory with infinitely many 
locations, each capable of storing a single binary digit in electrical form. 
If electricity is present in a given location, then the digit is a 1, otherwise 
it is a 0. Sequences of O's and l's can code any information whatsoever. 
One BILRAM can store not just all the information in the universe : it can 
store an infinite amount of information!" 

"I see why you leave most of it in the drawer." 
"Well, yes, it is rather unwieldy. I have to store it in an infinite pan-
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dimensional compressor field, but don't worry about technical details." 
"Doesn't it take electrical signals a long time to get from one end to the 

other?" I asked. 
"Strictly speaking it only has one end, the one I'm holding. The other 

'end' just goes on forever. But yes, it takes infinitely long." 
I suggested that this wasn't very practical. Bunnydew agreed. "But the 

BILRAM is still very interesting. It needs no power source." 
I didn't believe him. "What about the Law of Conservation of Energy?" 
"Doesn't apply," he said airily. "Not to an infinite system. Let me 

explain. The BILRAM is made from silicon, which is a semiconductor. Its 
memory locations work electrically. Electrical power is obtained from 
electrons. Now, if you remove an electron from a semiconductor, you get 
what physicists call a hole. 

"Suppose that I start with a BILRAM in which every memory location 
contains a binary zero: no electrons. Also no holes: neutral. Understand?" 

"Sure." 
"Good. Now, I create an electron in location 1 by borrowing it from 

location 2." 
"But that leaves a hole in location 2 !  Energy is conserved!" 
"You speak too soon, my boy. Because I also remove an electron from 

location 3 and place it in location 2. That fills up the hole in location 2, but 
of course creates one in location 3. I get rid of that by borrowing an 
electron from location 4. Suppose I borrow electrons infinitely many 
times. For every integer n = 2, 3, ... I remove an electron from location n 
and place it in location n- 1 (figure 3.1). What do I get?" 

I thought about that. "You get an electron in location 1. The other 
locations all lose one electron but gain another . . .  So they stay neutral." 
"But," I added, "of course you get a hole at infinity." 

"No I don't," he said. "Infinity never comes into it. Each location 
corresponds to a finite value of n. No, I get an electron in location 1 while 
everything else ends up the same as it started. Creation from nothing! 
That's just one of the paradoxes of infinity. And that's not all. Imagine a 
BILRAM filled up completely with an infinite amount of information . . .  " 

"Huh? How can you have an infinite amount of information?" 
"How about a complete list of all prime numbers? Of course you can 

have an infinite amount of information! I've got a full BILRAM here in the 
lab -it's called the GAULEO file (figure 3.2). I bet you can't guess what's on 
it! Anyway, suppose you've got a BILRAM that's completely full, and you 
want to add another piece of information to it. What do you do?" 

"You can't do anything! If the chip's full, there's no more room!" 
"On an infinite chip there is. Forget the electrons, and think about the 

way the holes moved." I thought. Suppose you have a list of binary digits 
which should read 101100011000 ... but you've forgotten the 1 at the front. 
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• 

� � � 1 2 3 4 5 6 7 

3.1 Electron-hole pairs are electrically neutral. If electrons (black) are moved through 
an infinite system of holes, it is possible to create a free electron from nothing, in violation 
of the Law of Conservation of Energy. 

3.2 The beginning of the GALILW file, containing an infinite amount of information. 
What does the file list and how is the information coded? 

i o l 1 1 1 ! 0 ! 0 ! 0 ! 1 ! 1 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 1 ! 1 ! 0 ! 0 ! 1 ! {  

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  
1 1 ! o ! 1 1 1 ! o j o j o ! 1 1 1 1 o j o j o ! o j o j o l 1 ! 1 ! o l o l { 

3.3 To add a digit 1 at the front of the full GALILW file, just move each digit up one place. 
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You've written them all into a BILRAM, in order, 01100011000 ... . There isn't 
any room on the far end for the missing 1, because there isn't a far end . . .  
Of course ! Where did the holes go? The electron trick in reverse! "Move 
everything up one location," I said. "The information in location 1 goes 
into 2, that in 2 goes into 3, and so on . . .  That leaves location 1 free for the 
new bit of information." (Figure 3.3) 

"Right. So infinity plus one is just infinity again." He wrote "co + 1 = 
oo" on a notepad. "One of the many paradoxes of the infinite . The whole 
can be the same as a part. Butlet us continue. What if we have several items 
of new information to add?" 

"You move everything up sufficiently many times." 
"Excellent! And this proves that if you add a finite number to infinity, 

you get infinity again, yes?" 
"I  suppose so . . .  It all depends on what you mean by 'add'." 
"You are beginning to be cautious about infinity. I like that. No doubt 

you can now work out how to add an infinite amount of new information 
to a full BILRAM?" 

"Move it up an infinite number of . . .  Oh, no, it all falls off the end at 
infinity." 

"But there isn't an end at infinity." 
"It still falls off," I said doggedly. "I'm sure it does. Even if there isn't 

an end to fall off from. If you move the information along an infinite 
number of times, you lose it all." 

"Correct." 
"It can't be done, then." 
Zebedee }. J. Bunnydew laughed . "So infinity plus infinity makes a 

larger infinity?" 
"Yes. No! I'm confused ! Infinity is the biggest thing there is. You can't 

have two different sizes of infinity . . .  " 
He shook hishead sadly. 'Wrong again. Your terrestrial mathematician 

Georg Cantor would be turning in his grave. But that is irrelevant. To add 
an infinite amount of information to a full BILRAM, you merely move the 
contents of location n to location 2n. That frees up all the odd locations ­
infinitely many." 

"It's like riffle-shuffling a pack of cards!" I said in excitement (figure 3.4). 
"An excellent image, my friend. Yes -if you take two infinite packs of 

cards and riffle them together, you get just one pack, the same size as each 
of the two you started with. So oo+oo = oo, as you might expect. 

"And you can even accommodate infinitely many sets of infinite 
information. You begin to see the attractions of my BILRAM! A memory 
that never fills up; or rather, if it does, you just move the contents around 
and create new space from nowhere!" 

I pointed out that all this took infinitely long to happen. "You asked 
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3.4 Riffle-shuffling two infinite lists together creates a single list the same size. 

me about large computer systems," he replied. "Not fast ones." He 
grinned. "Of course, if I could make the first move in one second, the next 
in half a second, the next in a quarter of a second, and so on, then after two 
seconds, the job would be finished!" 

"Ridiculous. You can't move faster than the speed of light." 
He looked at me archly. "So how did you get here, a billion light-years 

(and a few metres) from Earth, without bringing so much as a sandwich 
with you to eat on the journey?" 

I blushed . "Well, except for space-time warps . . .  " 
"To name but one method.  I'm wor�g on an improved design of 

infinite RAM which avoids the problem entirely." He opened another 
drawer and pulled out a sketch (figure 3.5). "The Bunnydew Golden 
RAM chip," he said proudly. "Let me remind you of the two basic 
principles of chip manufacture. One: repetition. Two: photographic 
miniaturization.  You will note that the design consists of infinitely many 
repetitions of the same basic unit, but continually reduced in size. The 
basic unit, of course, is a single memory location." 

Zebedee J. J. Bunnydew had developed a new infinite-zoom camera 
that could reduce a photograph to any size, however small. His basic 
memory circuit occupied a square. He had solved the problem of fitting 
infinitely many squares efficiently on a rectangular chip by using a 
rectangle whose sides were in the golden ratio qJ. If a square is removed 
from such a rectangle, the remaining rectangle is exactly the same shape 
as the original. The exact value of (/J ean be calculated from this, and it is 

�!J� - 1 618034 2 - • • • • •  
"This design," said Bunnydew proudly, "ensures that if one memory 

location is removed, the remaining part of the chip is exactly the same as 
the whole thing, but reduced in size. My new recursive photography 
techniques . . .  Oops, they're classified -forget I said anything. Anyway, 
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3.5 The Bunnydew Golden RAM chip, in which the same memory unit is repeated 
infinitely often. 

because the total size is finite, the speed of light is no longer a limiting 
factor. Also, it's the only chip in existence that can be made as small as you 
like - and therefore as fast as you like - just by cutting bits off." 

"That's impressive," I admitted. A thought struck me. "Does it work? 
What happens when the units get below atomic size?" 

"I shrink the atoms too," he said. 
"Somebody round here needs a shrink." 
"I'll admit," he said, "that I've run into trouble making an infinite­

resolution photographic emulsion. But I'll find a way eventually." He 
put the design back in the drawer and shut it. "And when I do, I'll also 
be able to realize my design for an infinitely accurate digital watch which 
shows the time correct to an infinite number of decimal places by using 
a golden rectangle liquid crystal display which is almost . . .  " 

To calm him down, I tried to distract him. "I know a puzzle about 
infinite machines," I said. "Imagine a light switch . You switch it on . After 
one second you switch it off. After a further half second you switch it on 
again. After another quarter second you switch it off, and so on. 
On-off-on-off faster and faster, each taking half the time of the previous 
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The Autovoracious Ourotorus 

A mythical serpent of ancient Egypt.  
An alchemical symbol . 
Kekule's discovery of the benzene ring. 
An Indian theory of rhythm, a thousand years old. 
The seven bridges of Konigsberg. 
The theory of telephone circuits. 
Radar maps of Venus. 

A random assortment of items? Not at all. They all have something in 
common - but you'll never guess what. 

The common thread is a nonsense-word in Sanskrit :  
yamattirtijabluinasalagtim. 
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The curious unity of these ideas was discovered in about 1960 b y  
Sherman K. Stein, a mathematician a t  the University o f  California, Davis. 
Much of the tale that I shall tell is based on chapter 8 of his book, 
Mathematics: the Man-Made Universe. But there'sa twist to the tale -rather, 
tail - and you'll find some new material here too. 

The mythical serpent of ancient Egypt is the worm Ouroboros, which 
puts its tail in its mouth and continually devours itself . It was used as an 
alchemical symbol in the Middle Ages. The chemist Friedrich Kekule 
invented his famous ring structure for the benzene molecule after 
dreaming about Ouroboros . A similar " tail-eating" concept occurs in the 
musical theories of ancient India, by way of the nonsense-word above . 
This word raises a mathematical problem which can be solved by 
applying ideas invented by Leonhard Euler to solve the famous problem 
of the Konigsberg bridges . The results have applications to telephone 
transmission and the methods used to map the surface of Venus from the 
Earth using sensitive radar. 

It's a curious story. 
And it involves some delightful recreational mathematics, which 

poses many unsolved problems, suitable for the amateur to tackle . 
Stein found out about yamdtdrdjabhdnasalagdm from a composer, George 

Perle, who told him that it was a word invented as a mnemonic for 
rhythms. What's important is not the vowels and consonants, but the 
stress placed on the syllables. Perle explained it this way: II As you 
pronounce the word you sweep out all possible triples of short and long 
beats. The first three syllables, ya md td, have the rhythm short, long, long. 
The second through the fourth are md td rd: long, long, long. And so on." 
There are eight distinct triples of rhythms, long or short; you can check 
that each occurs in the nonsense word exactly once . 

Stein reduced the word to its mathematical content by using 0 for short 
and 1 for long, so that it became 0111010001. II After staring at the 
simplified string for a while, I noticed a lovely thing. The first two digits 
are the same as the last two; if I bent the string into a loop, it would look 
like a snake swallowing its own tail ." (Figure 4 .1) He called the result a 
memory wheel, because you can start in any position, and by clicking 
round one space at a time, generate all possible triples of digits 0 and 1:  

0 1 1 1 0 1 0 0  . . .  
0 1 1 

1 1 1 
1 1 0 

1 0 1 
0 1 0 

1 0 0 
0 0 0 

0 0 1 
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Like that. 

4.1 An ouroborean ring containing all triples of digits 0 and 1.  

Let's use a more impressive name, and call it an ouroborean ring. 
Any alert mathematician immediately starts asking questions. Are 

there ouroborean rings for quadruples of O's and 1's? Quintuples? n­
tuples? What about O's, 1 's, and 2's? Vast generalizations flash through 
the mathematician's fertile mind. 

Then a simpler question occurs. What about pairs? Can you find a 
sequence of length four, consisting of only O's and 1's, which when 
written in a circle contains all four possible pairs 00, 01, 10, 1 1 ?  Try it. 
When you've solved that one -which is easy - try finding an ouroborean 
ring containing all sixteen quadruples. Then read on. 

Yes, there is an ouroborean ring for pairs: 001 1 (figure 4.2). It's 
essentially unique: all other solutions can be found by rotating it to get 
0110, 1100, 1001, which look the same when you draw them on a self­
devouring snake. 

Stein found one for quadruples: 

11110000101001 10. 
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4.2 The unique ouroborean ring containing all pairs of digits 0 and 1 .  

By this time he was convinced that there would be ouroborean rings for 
n-tuples of O's and 1's. He tried to prove it, but although he had a very 
clever idea, it led to an unsolved problem in mathematics. But he then 
discovered that I. J .  Good had come across the question in some research 
in number theory in 1946 - and had solved it. 

Good's main interest was in finding an endless sequence of 0' s and 1 '  s 
in which every possible sextuplet occurred equally often, but his method 
was more general. He used a trick to tum the problem into one that had 
been solved in 1735 by Leonhard Euler, the most prolific mathematician 
in history. Euler's problem is one of the early sources of topology. 
Although it's extremely well known, I'll reproduce it here. The subsequent 
history of the Konigsberg road system, also important to our story, is less 
well known (probably because I've just invented it). 

"In the town of Konigsberg," wrote Euler, "there is an island called 
Kneiphof, with two branches of the River Pregel flowing around it. There 
are seven bridges [figure 4.3(a)]. The question is whether a person can 
plan a walk in such a way that he will cross each of these bridges once but 
not more than once." 



(a) 

(b) 

(c) 

(d) 

43 (a) Euler's problem of the Konigsberg bridges: road map, and corresponding graph. 
(b) After building the Kneiphof relief road. (c) When the one-way system was introduced. 
(d) How the one-way system was changed so that Euler's theorem applied. 
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You may wish to experiment. You'll soon decide that there's no 
solution. 

Euler went further. He proved there is no solution, and he found 
general conditions for the existence of solutions to any problem of the 
same kind. 

To do this, he replaced each land mass by a dot and each bridge by a 
line connecting appropriate dots, obtaining a graph which accurately 
reflects the topology of the connections. The graph is shown on the right 
of the figure, at the top. The problem now becomes: can you trace a path 
through the graph, passing exactly once along each edge? 

Well, said Euler: suppose such a path exists. Except at its two ends, 
whenever it reaches a dot from one direction it leaves by another. 
Therefore the total number of edges meeting each point is even - except 
for the two ends, where it might just be odd. 

However, for the bridges, these numbers are 3, 3, 3, and 5: all odd. 
Therefore no tour is possible. 

This gives a necessary condition for a complete tour. At most two dots 
must lie on an odd number of edges. Euler proved that it's also sufficient. 
If at most two dots lie on an odd number of edges, then a tour exists. It 
must start and end at the dots with an odd number of edges, if there are 
any. If there aren't, it can start anywhere; moreover, it can then be closed 
up into a loop that starts and ends at the same place. The proof isn't 
especially hard, but it takes a little setting up, so I won't give it. 

Some years after Euler's work, traffic in Konigsberg got so heavy that 
the city fathers built the Kneiphof relief road (figure 4.3(b)) .  The numbers 
of lines meeting each dot were then 6, 3, 3, 4. Exactly two are odd; so by 
Euler's theorem it's possible to find a tour. The tour must start on the 
North bank and end on the South - or vice versa. Such a tour is shown. 
Soon, instead of walking the famous route, the good citizens of Konigsberg 
began to drive round it after lunch every Sunday. 

In consequence, the traffic grew worse, and in desperation the city 
fathers introduced the Konigsberg one-way system (figure 4.3(c)). Several 
eminent citizens were fined for following the tour shown in figure 4.3(b), 
not having noticed that it went the wrong way up the final street. They 
then began to ask whether a legal tour was possible, and discovered that 
Euler had already thought of this too. 

A one-way system corresponds to a directed graph in which each edge 
is marked with an arrow, and must be traversed in the direction of the 
arrow. Again, Euler asked what would happen if a tour existed. At each 
dot, other than the ends, the path must enter and then leave. Thus the 
number of arrows coming into the dot must equal the number going out. 
At the ends of the tour, there must be one dot having one more entrance 
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than it has exits, and one having one more exit than it has entrances. These 
conditions are also sufficient for a tour; and if all dots have the same 
number of entrances as they do exits, a circular tour is possible. 

It's easy to see that figure 4.3(c) violates Euler's conditions. In fact, 
once you've crossed the leftmost bridge going north, there are two 
southbound bridges. You can only use one of them, and you can never get 
back to use the other. This ruined the inhabitants' Sunday drives, and 
after a petition was delivered to City Hall, the system was changed to the 
one in figure 4.3(d), satisfying Euler's conditions. 

Back to ouroborean rings. 
Let's find one for quadruples. The Good idea is to represent each 

quadruple as a one-way street leading from its initial triple to its final 
triple. For instance 01 1 0 is the road from town 01 1 to town 110, and is one 
way in that direction. There are eight triples, so there are eight towns 
joined by sixteen roads. The corresponding graph is shown in figure 4.4. 

It satisfies Euler's conditions. At each town, two roads enter and two exit. 
Therefore there exists a circular tour; but that is an ouroborean ring. 

The same argument works for quintuples, sextuples, and so on. And 
you can see why Euler's conditions have to be satisfied. For example, the 
roads leaving town 001 are either 0010 or 001 1 - the town's name, plus 
either 0 or 1 .  That's two exits. By the same argument, there are two 
entrances: 0001 and 1001 . 

Longer ouroborean rings, and their mathematical relatives, are used 
by electronic engineers to code messages. The 0' s and 1' s are binary 
digits: 1 is a pulse of electricity, 0 the absence of a pulse. Such codes have 
applications to telephone transmission and radar-mapping. The surface 
of Venus has been mapped from Earth by radar! Paradoxically, the 
returning signal is so weak that on average less than one quantum of 
energy returns. But the quantum is the smallest possible unit of energy! 
The answer to this paradox is that the coding method is very highly 
redundant: most digits can be missing and the signal still makes sense. So 
when the odd quantum gets lucky and returns to Earth, it contributes to 
a meaningful signal. 

It takes ages. 
Stein's book includes a tabulation of the history of ouroborean rings, 

from AD 1000 until 1960. The book deals only with sequences of 0' s and 
1 '  s; but we can ask the same questions for, say, pairs of digits 0, 1 ,2. There 
are nine of these. The Good Road Guide to the nine towns of the province 
of Pairs-from-Three looks like figure 4.5. Three roads run into each town, 
and the same number leave, so Euler's theorem tells us that a circular tour 
is possible. The one shown gives the ouroborean ring 

001 122102. 
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1 000 

1 1 00 0 1 0 1  

1 1 01 

1 1 1 0 

4.4 · The Good Road Guide to triples. 

0001 

1 001 

001 1 

1 0 1 1 

01 1 0  

01 1 1  



The Autovoracious Ourotorus 49 

4.5 The Good Road Guide to three-digit pairs. 

Similarly, for three-digit triples there is an ouroborean ring 

0001 11222121 102202101201002. 

In fact I got these sequences by applying an algorithm - a step-by-step 
method whose success is guaranteed - which works for any m-digit n­
tuples. Here's the method. 

Consider the case of triples formed from the digits 0, 1 ,  2: the general 
case is entirely similar. Start by writing out a list of all twenty-seven 
possible triples, in numerical order, starting at 000 and ending at 222. 
Now write down the start of an ouroborean ring: 

0001 11222 
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and delete from your list all triples included in it (so, for example, you 
delete000, 001 , 011,  1 1 1 , and soon upto222). Nowlookat the largest triple 
beginning 22: it is 221 . Write down the 1 on the end of the ouroborean ring 
and cross 221 off the list. Now look for the largest triple starting 21 . 
Repeat, always using the largest available triple and then crossing it off. You 
don't get stuck, and it closes up. The result is an ouroborean ring. 

As I said, the algorithm is guaranteed to work. A proof was given by 
M. H. Martin in 1934. 

Armed with this method, you will now be able to write down, before 
breakfast and with your hands tied behind your back, an ouroborean 
ring of length 1 1 7,649 containing every possible seven-digit sextuplet. 
Or, if you're not so ambitious, every four-digit pair or every three-digit 
quadruplet. Go on, try it! 

Martin's algorithm only produces one ouroborean ring for any given 
m and n, but in general there are many other solutions. For two-digit n­
tuplets there is a formula for the number of ouroborean rings, found 
by N. G. de Bruijn in 1946: it is two raised to the power 2n - l - n , which 
grows extremely fast. Here rings obtained by revolving a given one are 
considered the same. Here's a table: 

n 

2 
3 
4 
5 
6 
7 

Number of ouroborean rings 

1 
2 
16 
2048 
67108864 
144115188075855872 

The mathematical possibilities of autovoracity are by no means 
exhausted. Are there higher-dimensional analogues of ouroborean 
rings? For example, there are sixteen 2 x 2 squares with entries 0 or 1 .  Is 
it possible to write O's and 1 's in a 4 x 4 square so that the sixteen 
subsquares list each possibility exactly once? You must pretend that 
opposite edges of the square are joined together, so that it wraps round 
into a torus: I call this the Ourotorus Problem. 

Here's a different way to say it. Cut out the sixteen pieces shown in 
figure 4.6. Note the white dot near the top to tell you which way up they 
go. Can you arrange them in a 4 x 4 grid, keeping the dot at the top, so 
that adjacent squares have the same shade along common edges? Again, 
this rule also applies to squares that become adjacent if the top and 
bottom of the grid are joined, or if the left and right sides are. 
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I don't want to deprive you of the pleasure of looking for the solution, 
so I'll tell you what it is at the end of this chapter. I'll show you something 
else instead. 

There are eighty-one possible 2 x 2 squares containing the digits 0, 1, 
2. I can fit them together to make a 9 x 9 ourotorus, as follows. Begin with 
the corresponding ouroborean ring 

001 122102. 

Write this down again: 

001 122102. 
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Then shift it one space to the right, remembering to wrap the last digit 
round to the start: 

2001 12210. 

Next shift this two spaces right; shift the result three spaces right; and so 
on, each shift being one space more than the previous one. The result, 
shown in figure 4.7, is an ourotorus! 

It's not hard to prove that this method works, without checking every 
subsquare. (Hint: think about the top and bottom rows of the 2 x 2 
subsquare.) The same method of construction works for m-digit 2 x 2 
squares whenever m is odd. So, for example, you can generate a five-digit 
ourotorus of 2 x 2 squares by repeatedly shifting an ouroborean ring 
made up of five-digit pairs. 

0 0 1 1 2 2 1 0 2 

0 0 1 1 2 2 1 0 2 

2 0 0 1 1 2 2 1 0 

1 0 2 I 0 0 1 1 2 2 

1 2 2 1 0 2 0 0 1 

2 0 0 1 1 2 2 1 0 

1 2 2 1 0 2 0 0 1 

1 0 2 0 0 1 1 2 2 

2 0 0 1 1 2 2 1 0 

4.7 An ourotorus for three-digit pairs. 
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But the method fails when m is even. In fact, I don't know whether 
there exists an ourotorus for four-digit 2 x 2 squares. Can anyone find 
one? Are there any general methods for obtaining ourotori for m-digit 
2 x 2 squares when m is even? 

Every row of an ourotorus constructed by this method is an ouroborean 
ring. Does there exist an ourotorus for three-digit 2 x 2 squares all of 
whose columns are also ouroborean rings? My solution doesn't have this 
property. 

I also have no results for 3 x 3 squares, say, except for some obvious 
remarks. The number of two-digit 3 x 3 squares is 29, which is not a 
square. So a "square" ourotorus can't exist in this case. However, there 
might be a rectangular one, say 16 x 32. Similar remarks apply tom x m 
squares with m odd, unless the number of digits is itself a square. 

And what about three dimensions? There are i = 256 2 x  2 x  2 cubes 
containing 0' s and 1' s. Can these be obtained from all the subcubes of a 
cube? No, because 256 isn't a cube. However, there are i7 = 134,217,728 
two-digit 3 x 3 x 3 cubes, and that's the cube of 512 . . .  

The mind boggles. Yamtittirtijabhdnasalagtim . . .  

ANSWERS 

Four-digit pairs: using Martin's algorithm, you get 

001 1223321310302 

Three-digit quadruples: the same method yields 

00001 1 1 1222212211212111022202210212021101220121011201 10022 
00210012001020201010002 

A 4 x 4 ourotorus (it is essentially unique) is shown in figure 4.  8 .  If its 
design is repeated as shown, you get a remarkable tiling of the plane by 
cross-shaped dark and light tiles, in which all possible 2 x 2 arrays of 
dark and light squares appear in a regular manner. 



54 Game, Set, and Math 

4.8 A 4 X4 ourotorus and its associated tiling. 
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Fallacy or Y callaf? 

It was a dark, cold, winter evening in Logicland. Tweedledumb and 
Tweedledim, the Terrible Twins, were having a logical debate. In other 
words, they were arguing. 

As usual. 
"Only an elephant or a whale gives birth to a creature that weighs 

more than 100 kilograms," said Tweedledumb. "Right?" 
"I suppose," said Tweedledim. 
"The President weighs 101 kilograms," said Tweedledumb. 
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"Uh-oh," said Tweedledim. "I can see exactly where you're heading 
and I don't . . . " 

"Therefore," said Tweedledumb . . .  
"The President's mother is either an elephant or a whale!" they yelled in 

chorus. 
"That's a fallacy!" screamed Tweedledim. 
"What's a fallacy?" 
"A fallacy is an apparently convincing argument that is logically 

false," said Tweedledim. "I'm surprised you didn't know . . .  " 
"Of course I know what a fallacy is! I meant, which step in my 

deduction is fallacious?" 
"The first. No, the second. No, they're both correct, but you've 

forgotten that . . .  " 
"See? It's not a fallacy at all! It's an ycallaf ! " 
'What's an ycallaf?" 
"My logical deduction about the . . .  " 
"No, 'Dumb! I know you're referring to your deduction. I mean, what 

on earth is an 'ycallaf'?" 
"An ycallaf," said Tweedledumb, "is an apparently false argument 

that is actually logically correct." 
"Your argument isn't an ycallaf! It's a fallacy!" 
"Isn't!" 
"Is!" 
"Isn't!" 
"Is!" 
"Isn't!" 
"Is! Is! Is! Is!" 
They carried on like that for some time. There's nothing like a good 

logical argument - and what they had was nothing like a good logical 
argument. 

Everyone in Logicland is either a logician or a mathematician. It's a 
funny place. You see, to do mathematics you have to be good at logic. In 
fact mathematical research is the art of telling the fallacies from the 
ycallafs. How good would you be at research mathematics? Here are ten 
problems to test your aptitude. All you have to do is decide which is 
which. Answers at the end. Good luck! 

1 Tangram Twins 

The old Chinese puzzle of tangrams consists of a square, cut into seven 
pieces. Tweedledumb and Tweedledim were playing tangrams. 

"I've made a man," said Tweedledumb. 
"So have 1," said Tweedledim (figure 5.1). 
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Fallacy or Y callaf? 57 

"You idiot, yours hasn't got a foot!" said Tweedledumb. "You must 
have missed out one of the pieces." 

Fallacy or ycallaf? 

2 Logarithmania 

"You like mathematics, don't you, 'Dumb?" said Tweedledim. 
"Provided it's accompanied by a good wine and served hot . . .  " 
"You'll love this, then! Now, you'll remember that the logarithmic 

series 
I 2 I 3 log ( 1 + x) = x - 2x + 3x - . . .  

is valid provided x is greater than- 1 and less than or equal to 1 ." 
"Convergent, you mean." 
"Precisely! You are in an agreeable mood today, 'Dumb!" 
"No I'm not!" 
''Yes you are!" 
"No I'm . . .  " 
"Have it your own way. Now, put x = 1 to get 

1 2 1 I I I I I I I I og = - 2 + 3 - 4 + s - 6 + 7 - s + 9 - . . . . 
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Double it: 
2 2 2 2 2 2 2 2  2 log 2 = 2 - 2 + 3 - 4  + s - 6 + 1 - s + 9 - . . .  

2 I 2 I 2 I 2 = 2 - 1 + 3 - 2  + 5 - j + 7 - 4  + 9 - . . .  
Collect pairs of terms with the same denominator. Now you get 

1 I I I I I I I I 2 og 2 =  1 - ::z + 3 - 4 + s - 6 + 7 - s + 9 - . . .  

= log 2. 
Therefore 2 log 2 = log 2, that is, 2 = 1 .  Neat, isn't it?" 

Fallacy or ycallaf? 

3 Easy for Sum 

"I know one like that," said Tweedledumb. "Take the series 

1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 +  . . . .  
Bracketed like this, 

( 1 - 1)  + ( 1 - 1 )  + ( 1 - 1) + . . .  

the sum is 0. But bracketed as 

1 + ( - 1  + 1) + ( - 1  + 1) + ( - 1  + 1) + . . .  
the sum is 1 .  So 1 = 0. Incidentally, that confirms your result: just add 1 to 
each side! " 

Fallacy or ycallaf? 

4 Knot so Easy 

Tweedledim fancies himself as a conjuror. "Hey, 'Dumb! Here's a good 
trick! First, I tie a knot in this string, like so . . .  Then I tie another one . . .  
Abracasesame! Look, they've both vanished!" (Figure 5.2) 

"That's silly, 'Dim. All you've done is tie a knotand its antiknot, so that 
they both cancel out." 

"Antiknot? Who ever heard of an antiknot?" 
"The same knot, tied inside out." 
"What rubbish! There's no such thing as an antiknot! And I can prove 

it! Did you know thatyou can doarithmeticwith knots? To add two knots 
K and L you just tie them in tum in the same piece of string (figure 5.3). 
Call the result K+L, right?" 

"If you insist." 
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��=====:::::.--. 
ABRACASESAME! 

5.2 Two knots . . .  Merge them . . .  They cancel. Can it be done? 

"Good. Now, obviously 0 must be the unknot - a knot that isn't 
knotted, if you see what I mean." 

"Why?" 

K L 

K + L  

5.3 Knot arithmetic. 
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"Well, if you tie a knot K and then tie the unknot, it's the same as just 
tying K, so K + 0 = K .  It makes sense. Now, if K is a knot, then its antiknot 
can be written as -K , because K + (-K )  has to equal 0." 

"Aha! So you agree that an antiknot can exist!" 
"No, no. I'm going to show that the only knot that has an antiknot is 

the unknot." 
"Oh. What? Say that ag- . . .  " 

5.4 An infinite knot that proves cancellation is impossible. Or does it ? 

"Wash your ears, you'll hear better! Now, suppose I tie the infinite 
knot (figure 5.4) 

K - K + K - K + K - K +  . . . . . " 

"You know, I've seen something like this be£- . . .  " 
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"Bracketed like this, 

(K - K )  + (K - K) + (K - K) + . . .  
its value is 0. But, bracketed like this: 

K + (-K + K ) + (-K + K ) + (-K + K) + . . .  , 

its value is . . .  " 
"K. So K = 0. Yeah, sure. And you accused me of talking rubbish!" 
Fallacy or ycallaf? 

5 Poker by Phone 

Tweedledumb and Tweedledim enjoy a good game of cards. But 
Tweedledim is going on holiday soon. 

"I'll miss our card game." 
"Me too. We have such vicious fights . . .  " 
"I know! We'll play poker by phone! I'll deal out the cards, send you 

your five, and then we'll tell each other which card we're playing." 
Tweedledumb considered this. "Great idea," he said, with heavy 

sarcasm. "How do I know you won't cheat?" 
"I promise not to." 
"Liar! You always tell lies!" 
"Yes, I do. Anyway, how do I know you won't cheat?" 
"We can tell each other what all the cards are," said Tweedledumb. 

They thought about this for a moment. 
"That's stupid!" 
"No it's not. We can put them in code, so that the other one can't 

decode them. Then, at the end, we can reveal our codes and check that 
nobody' s cheated!" 

"I'm sorry, 'Dumb, but I really don't see what you're on about." 
"OK. Listen very carefully, I shall say this only once . . .  You've heard 

of trapdoor codes?" 
"Theoretically unbreakable codes? Where you can tell anyone how to 

put a message into code, but that doesn't help them decode anything?" 
"You got it. Now, you choose an encoding rule Edim and a decoding rule 

Ddim ;  I choose rules Edumb and Ddumb . We both know the Es, but we only 
know our own Ds." 

"OK so far." 
"If I put a message M into code then I get EdumbM. To decode it, I work 

out Ddumb EdumbM, which is M. So Ddumb undoes Edumb' Now, I take the 
fifty-two messages . . .  " 

"I take the fifty-two messages!" 
"Very well. You take the fifty-two messages 
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ACE OF CLUBS 
TWO OF CLUBS . . .  

and so on up to 

KING OF SPADES. 

You put each one into code using your rule. Each message M is changed 
to Edim M. You shuffle the lot . . .  " 

"Randomly rearrange them, you mean?" 
"Right. Then you transmit the lot to me." 
"Sounds fair enough so far." 
"I then select five messages at random, and send them back to you so 

that you can decode them to find out what your hand is. I can't know your 
hand, because I can't decode your encoding rule. Then, I select five more 
random messages, constituting my hand." 

"Ah, but you've got a problem then. You can't decode them to find 
what they are!" 

"No, but I'm clever. I encode them a second time, using my rule Edumb . 
So if the message is M, it becomes Edumb EdimM. Then I send them back to 
you, and you undo the effect of your code Edim by applying D dim . That gives 
Ddim Edumb Edim M, which is the same a Edumb M." 

"You're tacitly assuming that Edumb Edim = Edim Edum/' 
"Oh, so I am. But that can be arranged if we choose the right codes. 

Let's suppose it has. You send the five messages Edumb M back to me. I 
decode them by applying Ddumb . Now we've each got a hand of cards, 
with no cards common to both hands, and neither knows what cards the 
other has, so we can play. We keep a tape of all messages, and at the end, 
we each reveal our decoding rules, so that we can both check nobody' s 
cheated at any stage." 

Tweedledim considered this at length. "Heck, it's complicated," he 
said. 

"Look, here's an analogy. Poker by post. You put the fifty-two cards 
into identical boxes, and padlock them all with locks to which only you have 
the key. You send them to me. I select five at random to make up your 
hand. I select another five at random for my hand, and put another 
padlock on those, to which only I have the key. I send all ten to you; you 
take off your padlocks and send my five back to me, with my locks still 
in place. Simple!" 

Tweedledim got out a pad and started scribbling on it, checking the 
logic. Suddenly he stopped. 

"Hang on," he said. "Suppose there are just three cards." 
"But there are fifty-two." 
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"Yes, but the method ought to work with just three. Now, we send 
each other lots of messages, at the end of which we each know one card 
- our own - and we know they're different. Right?" 

"Right." 
"OK. Now, let S dim be the set of cards that I could have ended up with, 

consistent with those messages, and let sdumb be the set of cards you might 
have ended up with. Then my card belongs to S dim ' and yours belongs to 

sdumb ." 
"I begin to see your drift," said Tweedledumb. "Either of us can work 

out S dim and S dumb by pure logic. That's the whole point. So the set S dim can't 
be just your card." 

"No. Otherwise you'd know what my card was. On the other hand, 
S dim and S dumb can't contain a common card, or else we might both be 
getting the same card. So Sdim can't be all three cards, because then you 
can't get any cards at all." 

"I see. So S dim contains exactly two cards out of the three." 
"Excellent! But, by the same token, so does Sdum/' 
"And the sets don't overlap, so there have to be at least four cards 

altogether," said Tweedledumb. "But, there are only three." 
"So we can't play poker by telephone after all," said Tweedledim. 
Fallacy or ycallaf? 

6 Was Galileo Right? 

During a particularly violent argument, about the smallest whole number 
that cannot be described using less than fourteen words, Tweedledumb 
picked up a teacup and threw it at Tweedledim. 

"Yah! Missed! Can't you even compute a parabolic arc?" 
'What's a parabola got to do with it?" 
"Galileo proved that the path of a falling projectile is a parabola." 
"No it's not." 
"Neglecting air resistance, of course." 
"It still isn't. Galileo got it wrong." 
Fallacy or Y callaf? 

7 Au Courant 

Tweedledim had been reading a classic of expository mathematics, What 
is Mathematics? by Richard Courant and Herbert Robbins. 

"Hey, here's a good one! Wake up, 'Dumb!" 
"Gronfff. What?" 
"Suppose a train travels between two railway stations along a straight 

track. A rod is hinged to the floor of one of the carriages, able to move 
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without friction either forward or backward until it touches the floor 
(figure5.5). If it does touch the floor, assume it stays there throughout the 
subsequent motion. Suppose I specify in advance how the train moves. 
But the motion need not be uniform: the train can speed up, stop 
suddenly, even go into reverse for a time. It must start at one station and 
end at the other. Can you always place the rod in such a position that it 
never hits the floor during the journey?" 

"Hmmph . . .  Tricky. The equations of motion are . . .  Oh, wait, I get it! 
It's a topological problem!" 

"Eh? What have rubber sheets got to do with . . .  " 

-

5.5 Hinged rod on a railway carriage. Can it fail to hit the floor? 

"No, no. It's about continuity. The final position of the rod depends 
continuously on its initial position! Now, there's a continuous range of 
angles that I can start it at, from 0° to 180°, so the range of final angles is 
also continuous. If I start it lying down forwards at 0°, it stays there. If I 
start it lying down backwards at 180°, it stays there. So the range of final 
angles includes all values between 0° and 180°. In particular, it includes 
90°, so I can arrange for the rod to finish up vertical. Since it stays on the 
floor when it hits it, it can't hit the floor at all." 

Fallacy or ycallaf? 
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"I've got another mathematical one," said Tweedledim. 
"Show-off." 
"It's a calculus question. You know that when you integrate the 

exponential function ex you just get ex again?" 
"You mean, J ex = ex ?" 
"Right! Now, write that as 

so 
( 1 - J ) ex = 0, 

ex = I J o  I -

= ( 1 + J +r+J3+ . . .  ) o  
using the power series for ;:!:-I' In other words, 

ex =  ( 1  + J  + J J  + J J  J + . . .  ) 0. 

But f O = 1, J 1  = x, f x = �x: and so on. You end up with the power series 
X I 2 I 3 e = 0 + 1 + x + 2x + 6x +  . . . . 

Isn't that cute?" 
Fallacy or ycallaf? 

9 Impossible Tiling? 

Tweedledumb was playing with lots of tiles. They were all apparently 
regular polygons, with equal sides and equal angles. 

"Hey, that's neat! They all fit together to cover the plane!" (Figure 5.6) 
"Let melookat that," said Tweedledim. "Something's wrong, 'Dumb! 

Ifyoutilethewholeplanewitha mixture ofequal-sided regularpolygons 
you can do it using polygons with three, four, six, eight, and twelve sides, 
but no others. But your tiling has got polygons with five and seven sides 
in it! You must have made a mistake." 

"Well, look for yourself!" 
Fallacy or ycallaf? 

10 Spelling Mistakes 

"My tum," said Tweedledim. "A quickie to end on. 
"Ther are five mistakes im this centence." 
Fallacy or ycallaf? 
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5.6 A new tiling by regular polygons? 

ANSWERS 

1 Tangram Twins. 
Fallacy. Tweedledim hasn't missed out a piece. He's just found a different 
arrangement (figure 5.7). 

2 Logarithmania 
Fallacy. The logarithmic series is not absolutely convergent (convergent if 
every term is made positive) and hence cannot be rearranged. 
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5.7 Tweedledim 's tangram man, and Tweedledumb's. No pieces missing! 

3 Easy for Sum 
Fallacy. The sum of the series is not well defined. 

4 Knot so Easy 
Y calla£. On the surface it looks like the previous problem, but it isn't. The 
infinite knot is well defined, and all manipulations of the sum have valid 
geometric counterparts. The proof can be made completely rigorous! 

5 Poker by Phone 
Fallacy and ycallaf! Both arguments are "right". The second (impossibility 
prooO does not contradict the first (practical solution). The point is that 
given a sufficiently long time the code messages involved can be decoded, 
and the poker game then becomes impossible. But in practice the time 
would be longer than the age of the universe. That's an "unbreakable 
code" for practical purposes. For more about this kind of code, see the 
items in "Further Reading" by Gardner, Hellman, and Klamer. 

6 Was Galileo Right? 
Ycallaf. Galileo's result assumes a flat Earth and constant gravity. With 
a spherical Earth, and Newtonian gravity, thepath of a falling body is like 
that of any other body revolving round the Earth: an ellipse. 
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7 Au Courant 
Fallacy. (I'm going to get lots of letters of protest!) If the assumption of 
continuity is correct, the argument is an ycallaf. But the continuity 
assumption is not justified. The problem is those "absorbing boundary 
conditions": if the rod hits the floor, then it stays there. 

Imagine first that the rod can tum a full 360°- no floor. Then a possible 
history is shown in figure5.8(a). When the absorbing boundary conditions 
are put back (figure 5.8(b)}, all initial positions end up on the floor. 

270° oo 

initial angle 
90° 1 80° 270° 

(a) 

270° oo 

i nitial angle 
900 

(b) 

1 80° 270° 

5.8 Why Courant and Robbins should not have assumed continuity. The graphs show 
the histories of various initial positions. The two pictures are identical, except that in (b) 
the "absorbing boundary conditions" have been added (grey lines). The history shown as 
a heavylinecausesno trouble in (a).However, becauseitis tangent to the grey line at 180°, 
representing the floor, in (b) it causes a discontinuity. Any initial position to the left of 
the heavy line ends up on the floor at 0° ;any initial position to the right of, or on, the heavy 
line ends up at 180°. 

This error in Courant and Robbins's reasoning was first pointed out by 
Tim Poston in Manifold magazine in 1976. It's still not as widely known 
as it should be. 

8 Integral Equation 
Y calla£. The theory of Banach spaces can be used to give a rigorous 
justification for the manipulations of the f sign. If it is treated as an 
operator, the series expansion for 

( 
1 �f) is correct! 



9 Impossible Tiling? 
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Fallacy. The tiles are either not exactly regular polygons, or they don't 
meet exactly. For example, one vertex is surrounded by a pentagon, a 
hexagon, and an octagon. If these are regular, their angles are 108°, 120°, 
and 135°, which add up to 363°. But if the tiles fit exactly, the sum should 
be 360°. 

The pattern is taken from an ancient Islamic design. 

10 Spelling Mistakes 
Ycallaf. There are only four spelling mistakes, yes. But there's a fifth 
mistake: the claim that there are five mistakes! 
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Build your own Virus 

Sniff. 
I sat miserably in the doctor's waiting-room. Next to me was a rather 

large woman with a rather small child wrapped tightly in a crocheted 
shawl. The tiny pink face was covered in even tinier pink spots. I moved 
two seats to my left and tried to remember whether I'd already had 
chickenpox. 

"Next!" 
I caught the receptionist's eye and passed through to the inner 

sanctum. 
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I confess that I seldom really enjoy a visit to Dr Athanasius Fell; but 
despite his rather crusty exterior he is one of the best doctors around. 
Unfortunately he has a hatred of mathematics - a failing not unheard of 
among the medical profession - and he knows that I'm a mathematician. 
Our relationship is a little nervous. 

"Hmmmph," he said. ''You again." 
"I wouldn't have bothered you but I've got a touch of influenza and 

I . . .  " 
"Mathematician." He made it sound like Typhoid Mary. "You can't 

fool me, I remember you. Parasites." 
"No, it's influ- . . .  " 
"I don' tmean you've got parasites. I mean mathematicians are parasites. 

No offence intended, you understand. Nothing personal. Just can't abide 
the creatures. Mathematicians, that is. What has mathematics ever done 
for medicine?" 

What has medicine, I thought, ever done for mathematics? I was about to 
catalogue a range of medical applications of my subject, from the 
statistical analysis of epidemics to irregularities of the human heartbeat 
and the malfunctioning of the thyroid gland, but he cut me short. 
"Nothing," he said, in answer to his own rhetorical question. 

Some devil within me- a phrase best associated with the Middle Ages 
rather than the modem practitioner, but one that remains curiously apt 
- prompted me to defend my profession. ''You'd be surprised," I said. 

He stuck a wooden stick in my mouth and inspected my tongue. 
"Hmmph. What?" 

"lt'th a funny thubject, mathematicth," I said. He gave me a look 
which suggested that this information was not novel, and removed the 
stick. I continued with greater clarity of diction. "Even the purest of pure 
mathematics has many unexpected applications." 

"I've heard that excuse before." 
"But it's true. You know about the ancient Greeks, of course . . .  " 
"Hippocrates was a Greek," he pointed out. "You may assume that I 

am conversant with the historical period." 
"Yes, well . . .  Now Euclid, you see . . .  " 
"Geometry." He made it sound like terminal gout. 
"Right!" I said brightly. "The climax to the entire ten-volume work of 

Euclid's Elements is the proof that there are exactly five regular solids. The 
tetrahedron, cube, octahedron, dodecahedron, and . . .  " 

"Icosahedron," he finished for me. "You've got exophthalmia -
protruding eyes," he observed. Ordinarily that's a disease of goldfish, 
but he was right. My eyes were protruding because he'd known about the 
icosahedron. "Regular solid with twenty equilateral triangles for faces. 
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Don't look so surprised. I do know some mathematics." He snorted. "Just 
don't see any point to it, that's all." 

"Funny thing, the icosahedron," I said. "It was discovered somewhere 
around 370 BC, as a purely mathematical construct. At the time, nobody 
could find it in nature." 

"Crystals," he said. 
"Oddly enough, no," I replied. "Cubes, octahedra, and tetrahedra, 

yes. But you can't get fivefold symmetry in a crystal." I wondered 
whether I should tell him about the recent discovery of quasicrystals, 
which have a kind of short-range fivefold symmetry, but decided it 
would just confuse things. 

"Footballs," he said. 
I agreed that the modem soccer ball (figure 6.1) is essentially icosahedral 

in shape - in fact it's a truncated icosahedron, one whose comers have 
been cut off. I went on to explain that this had been selected because it was 
an excellent approximation to a sphere that could be made from plane 
patches of leather, and had replaced the older design based on a cube 
whose square faces were cut into three parallel rectangular strips. While 
he stuck a very cold stethoscope up my shirt I finally pointed out that the 
soccer ball had not existed in 370 BC. 

"Pigs' bladders," he said. It was a colourful oath, one I hadn't heard 
before. 

"No, I don't think . . .  " 
"Ah!" he said. "Biology course, years ago at Addenbrooke's . . .  

Radiolaria! Chap called Heckle, something like that." 

(a) (b) 

6.1 The modern soccer ball (a) has the shape of a truncated icosahedron (b). 
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Ernst Haeckel had made a long sea-voyage searching for scientific 
specimens, publishing his results in his Challenger Monograph of 1887. I 
knew this because it's mentioned in one of my favourite oddball books. 
"Yes, D' Arcy Thompson reproduced some of Haeckel' s drawings in On 
Growth and Form." A radiolarian is a microscopic single-celled creature 
with a highly symmetric exterior skeleton. Haeckelhad sketched hundreds 
of the things, and some were approximately icosahedral (figure 6.2). But 
- to be honest - there are reasons to suppose that Haeckel may have 
exaggerated the symmetry of his radiolaria a teensy bit. I pointed this out. 

6.2 The radiolarian circogonia icosahedra from Ernst Haeckel's Challenger 
Monograph. 

"I'll give you a hint," I said. "Some scientists have called the icosahedron 
'Nature's favourite shape'." 

"Hmmph." Dr Athanasius Fell scratched his beard. "I give up." 
"Shame on you. And you a medical man, too." 
"What's that supposed to mean?" 
"Smallpox," I said. 
"Eh?" 
"Polio. Herpes. Turnip yellow mosaic . . .  " 
He palpated my stomach, firmly enough to make me wince. 
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"The icosahedron," I continued doggedly, "is one of the commonest 
shapes for a virus." 

That woke him up. "Is it? Let me see . . .  " He dug out a huge textbook 
and thumbed its pages. "Good God, the mathematician's got it right for 
once! (figure 6.3). Now, why would anyone pick an icosahedron?" 

6.3 The human wart virus is made up from seventy-two identical units arranged with 
icosahedral symmetry. [Madeley, Virus Morphology] 

"It may be the same reason that applies to soccer balls," I said. "If you 
want to make a roughly spherical body from a smallish number of 
identical units, then the icosahedron is the best shape. If you want a 
deeper explanation, it's probably that configurations with minimal 
energy tend to be symmetric, and . . .  " 

"No, no, that will do fine," he said quickly. "Mind you," he went on, 
thumbing his book again, "there are other virus shapes too." 

In fact, the other most common shape for a virus is that of a helix 
(figure 6.4), a spiral wound to form a tube, like the thread on a screw or 
a spiral staircase. Again, this is presumably a minimum-energy 
configuration for identical units. 
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6.4 The influenza C virus is a helix built from identical units arranged like treads in a 
spiral staircase. [Madeley, Virus Morphology] 

"Oh, look," he said. "Here's a helix made up of hexagonal components. 
Influenza C, the Taylor virus. Now, why doesn't that form something 
spherical instead of cylindrical?" 
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"You can't cover a sphere with hexagons," I said. "Not if you want 

them to fit like tiles, without overlapping." 
"Why not?" 
"Euler's theorem." 
"Theorem? !  Theorem?!  Don't hold with those damned things at all, I'll 

tell you. Angles at the base of an isosceles triangle - hmmph, angles on 
the head of a pin! Pythagoras, silly ass. Impossible? Pah, nothing's 
impossible if you try hard enough! Euler? Sounds defeatist to me. Never 
heard of him anyway. " 

"He's the most prolific mathematician of all time." 
"That explains it." 
"Euler proved that ifF is the number of faces of a solid, V the number 

of vertices, and E the number of edges, then F + V - E = 2. Now, if you 
have a solid with F faces all hexagonal, then the number of edges must 
be 

E = 3F 

because each hexagon has six edges but every edge ad joins two hexagons; 
and the number of vertices is 

V = 2F 

because each face has six vertices but every vertex appears on exactly 
three neighbouring faces. So by Euler's theorem we have 

F + 2F - 3F = 2 

But in fact F + 2F - 3F = 0. So it can't be done." 
For a moment he looked impressed, but he shook his head like a 

penguin shaking its feathers after a dip in the Southern Ocean, and the 
usual crusty visage reasserted itself. "Poliovirus, you said." 

"Yes. AteamofscientistsattheScrippsclinicusedX-raycrystallography 
to show that the poliovirus has much the same structure as a soccer ball 
(box 6.1) .  In fact, the general structure was suggested in 1962 by D. Cas­
par (Children's Cancer Research Foundation, Boston) and Aaron 
Klug (Laboratory of Molecular Biology, Cambridge) on mathematical 
grounds, but this wasn't confirmed until 1987." 

Dr Fell, meanwhile, had returned to an earlier remark. "If you can't 
cover a sphere with hexagons, what about pentagons?" 

Well, of course that's very interesting. Euler's formula again can be 
used to show that if you use only pentagons, then there have to be twelve 
of them, and the dodecahedron is the only possible shape. Now the 
problem is that the dodecahedron isn't really very rounded. Which is a 
pity, because spherical shapes tend to have the lowest energy - that's 
why a bubble or a raindrop is spherical. "Fortunately, you can get a 
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Box 6.1 How to make a model of the poliovirus 

Copy figure 6.5(a) onto thin card, leaving a narrow border to make tabs on 
each edge. Turn it over and score along the boundaries between pentagons 
and around the outline. 

Make twelve copies of figure 6.5(b) - a hexagon with one sector 
removed - also leaving spare borders on the edges for tabs. Turn over and 
score along the dotted lines. Fold and assemble into twelve five-sided 
pyramids, with flaps tucked under the base. Glue the flaps and stick the 
pyramids onto the white pentagons in figure 6.5(a). Then fold up the 
pentagons of figure 6.5(a) and glue to form a dodecahedron with pyramidal 
pimples on each face as in figure 6.5(c). 

(a) 

Fold along arrows 

(b) 

6.5 Use (a) and twelve copies of (b) to make a model of the polio virus (c). 
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rounder shape," I told him, "if you use only pentagons and hexagons. 
Then you have to have exactly twelve pentagons and the rest have to be 
hexagons . . .  " 

"Why? Why can't I take twenty-three pentagons plus enough 
hexagons?" 

"Euler's formula again, though the argument is a little more involved 
(box 6.2)." 

Box 6.2 Why there must be twelve pentagons 

Suppose a polyhedron is made up from p pentagons and h hexagons, 
with no other faces. Then F = p + h .  The pentagons have Sp edges, 
the hexagons 6h, so the total number is E = �51'�+ 611 ) because each edge is 2 
counted twice, once for each face it adjoins. Similarly then umber of vertices 
is V = (5P:!:6h ) . By Euler's formula, 

3 
2 = F + V - E = (p + h ) + (sp �6� - f�E: 6111 = � .  

So p = 12 .  

"Is there any limit on the number of  hexagons?" 
"The formula doesn't specify any." 
"That's very curious." 
"Yes, there's something rather strange about the pentagon. But there 

are restrictions on the number of hexagons if you want to make shapes 
that are very close approximations to a sphere." There's a very clever 
construction, due to Michael Goldberg and independently to Caspar and 
Klug (box 6.3). The number of faces, vertices, and edges have to be of the 
form 

F = 20T (twelve pentagons, the rest hexagons) 
E =  30T 
V = 10T+ 2 

where T is a number of the form 

T =  a 2 + a b +  b2. 

This gives an "almost regular" solid, the pseudo-icosahedron of type 
{a,b} . 

The "magic" numbers lO(a 2 + a  b + b2 ) + 2 play a special role in the 
structure of a virus. These are the numbers of identical units (of protein 
molecules) that can be fitted together in an "almost regular" way to form 
a nearly spherical surface. Most numbers are not of this special form. As 
table 6.1 shows, the only magic numbers less than 300 are: 
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12, 32, 42, 72, 92, 122, 132, 162, 192, 212, 252, 272, 282. 

Note that they all end in 2: can you see why? Their remainders on division 
by 3 appear to be either 0 or 2: is this correct, or can a number of the form 
3k+ 1 be magic? Why? Can a magic number be a perfect square? 

Box 6.3 Goldberg-Caspar-Kiug pseudo-icosahedra 

Start with a tiling of the plane by equilateral triangles. Form large triangles 
as follows. Pick two numbers a and b. Starting at some vertex, move a units 
right and b units up to form a second vertex. Repeattocreate a large triangle 
(figure 6.6(a) ). Now fit together twenty of these large triangles, still divided 
up into the original smaller triangles, to form an icosahedron (figure 
6.6(b)). This figure, projectedfromitscentreontoasphere, will yield a solid 
whose faces are very close to regular pentagons and hexagons, and 
having V = 1 0  (a 2 + a  b + b 2 ) + 2 vertices. This is the pseudo-icosahedron 
of type {a,b) . 

6.6 (a) Basic triangular unit of a pseudo-icosahedron of type {a,b}. 
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6.6 (b) Assembling twenty basic units to make a pseudo-icosahedron. 

Table 6.1 Magic numbers for virus structure 

a b (a 2+ ab + b2) to (a 2 + ab + b2) + 2  
1 0 1 12 
1 1 3 32 
2 0 4 42 
2 1 7 72 
2 2 12 122 
3 0 9 92 
3 1 13 132 
3 2 19 192 
3 3 27 272 
4 0 16 162 
4 1 21 212 
4 2 28 282 
5 0 25 252 

"Totally mad," said Dr Fell. ''You think that mathematics can dictate 
to Mother Nature? I'll tell you what you're suffering from, my boy. 
Hubris, that's what. And Nemesis will catch up with you, in the form of 
this book of viral data. Hmmmph . . .  This should do it: herpes simplex, the 
cold sore virus - 162 units!" 

"Type {4,0}," I said, 
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''What? Hmmph. So it is . . .  Must be coincidence. Well, this next one 
will put a spoke in your wheel . . .  Chicken adenovirus - 252 units." 

"Type {5,0}." (Figure 6.7) 
"Human wart!" he yelled. Several interpretations flashed across my 

mind. Another colourful insult? An oblique reference to the nose on his 
face? Not at all. He'd found another virus, and he wasn't any happier as 
a result. "Drat it! It's 72 - that's type {1,2}. BK virus - no, 72as well. Rabbit 
papilloma - 72 again!" 

"That's type {2,1}," I said. "Type {a,b} is the mirror image of type {b,a} 
when a ::F. b. Oh, isn't that amazing! The human wart and the rabbit 
papilloma viruses are almost identical, except that one is left-handed and 
the other is right-handed! Don't you find that a fascinating example of 
convergent evolu- . . .  " 

"Turnip yellow mosaic - 32, type {1,1}! REO virus - bother, 92! Type 
{3,0}!" He flipped the pages like a man possessed. "Ah, a really big one, 
bound to go wrong . . .  Infectious canine hepatitis! 362!" He looked at my 
list. "Not there, not there!" 

"That," I said, "is because the list didn't go on far enough. Try type 
(6,0}." 

He snorted uncomfortably. 
"Even Nature," I said, "has to obey mathematical restrictions. Provided 

that the mathematics is an adequate description of Nature - which, of 
course, is often a moot question. But the combinatorics of repetitive 
structures is very basic, it's not really a surprise if it shows up in the real 
world. 

"The same magic numbers tum up if you try to pack spheres together," 
I said. "If you start with one sphere you can pack twelve tightly round it. 
The next layer has forty-two spheres in it. Then there follow layers with 
92, 162, 252, and so on. Buckminster Fuller thought that was very 
exciting. He suggested that 92 would have special mystical properties . . .  
For example, the ninety-second element is uranium. That's special, all 
right." 

"Buckminster Fuller? Wasn't he an architect?" 
"That's right. But he took a lot of inspiration from mathematics. He 

designed geodesic domes - spheres built up from triangular patterns 
(figure 6.8) - on the same principles as the Goldberg-Caspar-Klug virus 
shapes (table 6.2). 

"The same ideas are important in chemistry too," I added, since the 
initiative was now firmly mine. "Chemists have synthesized organic 
molecules by joining up carbon atoms in the same kinds of pattern. They 
thinkthetruncatedicosahedronisespeciallyimportantbecauseitprobably 
forms naturally in space, between the stars. They call the molecule 
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6.7 Adenovirus type 12 ,  a type {5,0) arrangement of spherical protein units. To make 
a model like this all you need is 252 tennis balls (plus 60 for the spikes), several tubes of 
superglue, ingenuity, and persistence. [photographs, Science Photo Library] 
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6.8 A geodesic dome. [photograph, Science Photo Library} 

Table 6.2 Pseudo-icosahedra: viruses and geodesic domes 

{a,b} 

{1,1} 
{2,0} 
{2,1 } 
{1,2} 
{2,2} 
{3,0} 
{4,0} 
{5,0} 
{6,0} 
{8,8} 
{16,0} 
{18,0} 

virus 

turnip yellow mosaic 
bacteriophage <I>R 
rabbit papilloma 
human wart 

geodesic dome 

Arctic Institute, Baffin Island 

USS Leyte 
REO USAF Korea Officers' quarters 
Herpes, chickenpox Mount Washington 
adenovirus type 12 US pavilion, Kabul 
infectious canine hepatitis Arctic DEW line radome 

Lawrence, Long Island 
US pavilion, Expo 67, Montreal 
La Geode, Paris 
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6.9 A cage of carbon atoms forms the basic skeleton of the buckminsterfullerene 
molecule. Compare with figure 6.1. 

'Buckminsterfullerene' (figure 6.9) to honour the inventor of geodesic 
domes. Or sometimes 'footballene' . To - er - to honour the inventor of 
footballs . . .  " 

"Buckminsterfullerene," he said sadly. "Footballene." His head drooped 
in defeat. But then I saw his eyes light up. 

"I'v�diagnosedyourcomplaint,youngman," hesaid. "You'resuffering 
from pedodontia-Foot-in-the-Mouth Disease- which, of course, is caused 
by a very large icosahedral virus! If not treated early, it leads to classic 
symptoms of a swollen head, which must be treated by installing a relief 
valve in the cranium. Now, the cure for a large virus is obviously a very 
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large injection!" And he produced a syringe as long as my arm, looking 
like the sort of thing you spray trees with to kill swarms of locusts. 

"I suddenly feel a lot better," I said. 
"Nonsense! Just a quick jab . . .  " 
"Wait!" I yelled. "''ve got a better idea!" I suddenly remembered a 

spoof conference report that had gone the rounds of mathematics 
departments a couple of years ago. It was a joke, of course, but maybe Dr 
Fell wouldn't realize that. "Wait! I've just remembered some work of 
Prof. Bertram Kostant at the Massachusetts Institute of Technology." 

"So?" 
"He used a mathematical analysis of the icosahedron to calculate its 

natural vibrational frequencies. What you need is a variable-frequency 
laser!" 

"Why would I need a laser?" 
"You could tune it to the precise frequency at which the virus will 

shake itself to bits! Like a wine-glass shattered by sympathetic vibrations 
if someone sings just the right note!" 

"And what," he asked, "would I do with this laser if I had one?" 
"Stick it up my nose and switch it on," I told him. 

ANSWERS 

Magic numbers are all of the form 10(a 2 + a b + b2) + 2, and since any 
multiple of 10 ends in the digit 0, magic numbers must end in the digit 2. 

Magic numbers of the form 3k + 1 cannot occur. To see why, calculate 
the possible values of a 2 + a  b + b2 (mod 3) : 

0 1 2 

0 0 1 1 
1 1 0 1 
2 1 1 0 

We see that only the values 0 and 1 occur. Now any magic number 
10(a 2 + a  b + b2) + 2 becomes 1 (a 2 + a  b + b2) + 2 (mod 3) , because 10  = 1 
(mod 3) . This is just a 2 + a b + b2 + 2, which is either 0 + 2 = 2 or 1 + 2 = 0 
(mod 3) . 

No number ending in the digit 2 can be a perfect square, so square 
magic numbers don't exist. 
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Parity Piece 

I looked out of my window and a large tree flashed past it at more than 
a hundred kilometres per hour. But that's perfectly normal when you're 
on a train. The compartment was nearly empty. Apart from myself there 
was only a man in black trousers, black sandals, and bare feet. I couldn't 
see the rest of him - it was hidden behind a newspaper. 

I looked at my watch and decided that it was time for lunch. From my 
bag I took a loaf of bread, an orange, a banana, a bottle of wine, and - most 
important - a corkscrew. 
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I had eaten the bread and polished off most of the wine when I realized 
that the black-suited man was watching me through a small hole he had 
tom in his newspaper. This was disturbing. Was he a private detective? 
A plain-clothes policeman? A member of the KGB? I tried to work out 
what I might have done wrong and began to edge towards the door. It 
was then that he stole my banana. 

I was trying to decide between recovering my property and making a 
dash for freedom, when the end of the banana pushed its way through 
the hole in the newspaper. 

Curiosity, they say, killed the cat - and that had eight lives more than 
I do. But the whole thing was just too bizarre. "What," I said, "do you 
think you're doing with my lunch?" 

The newspaper was lowered and a thin face with spectacles and long 
fair hair appeared. The man wore a black cloak and had what looked like 
a wooden chain round his neck; he carried a strange stick carved into 
spirals with a cleft at the top like a devil' s horns. Apart from the spectacles 
he looked like an Old Testament prophet. "I was pushing your banana 
through this hole," he said. "I bet you £5 you can't push your orange 
through it too." 

"Of course I can't! The hole's too small!" 
He smiled. "So if I push your orange through the hole, you owe me 

£5?" 
"Provided you don't tear the paper, or cut up the orange, certainly!" 

I snapped. 
He picked up the orange and held it close to the hole in one hand. With 

the other he stuck a finger through the hole and gave the fruit a push. 
"There!" he said. "As promised, I have just pushed your orange through 
the hole!" 

I should have known better than to accept a sucker bet. I opened my 
wallet and transferred part of its contents into his palm. He produced a 
second bottle of wine and borrowed my corkscrew. 

It was a curious way to start a friendship, but that's how I first met 
Matthew Morrison Maddox. Maddox is a professional magician, and he 
usually specializes in tricks that have mathematical features to them. 
Hence his stage name, which he normally writes ''Matt M. Maddox". He 
told me that his stick, which he had carved himself, was called a thumb­
stick: you grasp it by putting your thumb between the two tiny horns. 

He was dismissive of magicians who used large pieces of complicated 
equipment to cut ladies in half or make elephants disappear from glass 
cages. The best tricks, he told me, were those that used only the simplest 
of apparatus. "For instance, take these corks," he said. "See how I hold 
them between the thumb and first finger of each hand, like this 
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(figure 7.1(a)). Now, using the finger and thumb of my left hand I pick up 
the two ends of the cork in my right hand; and using the finger and thumb 
of my right hand I simultaneously pick up the two ends of the cork in my 
left hand." He put his hands together, pulled them apart, and each hand 
held a separate cork (figure 7.1(b)). "Now you do it." 

/ 

(a) 

(b) 

7.1 A trick with corks. (a) Starting position. (b) Finishing position. 
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(c) 

7.1 A trick with corks. (c) How to get stuck. 

"Easy," I said, grasping corks between digits. But when I tried to 
separate my hands, the two corks wouldn't pull apart (figure 7.1(c)). He 
showed me the trick several times, but no matter how closely I watched, 
I couldn't see how he did it. "Whenever I try to do it, they're linked 
together," I complained. "How do you manage to unlink them? I don't 
see it." He just sat there, looking inscrutable. 

Stop fooling around, I told myself, and try a bit of logical thought. I started 
drawing diagrams to show how the corks and my fingers got tangled up. 

Reduced to the bare essentials, the arrangement that I was getting was 
like figure 7.2(a). Each hand+cork system forms a closed loop, and the 
two hand+cork systems are linked together. "It's topology, isn't it?" I 
said. He nodded, but still kept his silence. "I have to move my fingers so 
that I don't form a link . . .  Let's see . . .  How about this?" I drew 
figure 7.2(b). "No, silly, that's still linked, isn't it? Maybe figure 7.2(c)? 
No, same problem . . .  Aha! If I do it this way (figure 7.2(d)) then the two 
loops just pull apart! Now, let me try with the fingers . . .  Crikey, it's 
complicated, isn't it? Pardon me, I think I've dislocated my thumb." 

So then he took pity on me. "You're right about the linking," he said. 
"Basically it's a topological problem. But in topology you can stretch 
things as much as you like, or bend them in any conceivable direction. 
That's not true of your thumbs, as you've just discovered. So you have to 



(c) 

7.2 Abstract structure of the trick. Only (d) works. 
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find a way to get the fingers and thumbs into the right places without 
doing any damage." And then he showed me how you have to get your 
thumbs properly aligned, and then reach round with your fingers 
(figure 7.3). 

I practised the moves a few times until they came naturally. "Hey! 
That's a really good party piece!" 

''More of a parity piece, actually," he said. "You're onto a very basic 
distinction. Take a look at this chain." He passed me the chain from 
around his neck. It was wood, and each link was perfect and unbroken. 

"How did you join the links?" I asked. 
"You think I carved wooden links separately and then fitted them all 

together, the way a jeweller makes a metal chain? Can't be done, my 
friend. No, I started with a solid piece of wood and carved the chain 
already linked. Which leads us to a fundamental mathematical principle. 

"If I take two circles in space, they can either be linked (figure 7.4(a)) or 
unlinked (figure 7.4(b)). If they're unlinked, I can pull them completely 
apart (figure 7.4(c)). The only difference in the first two pictures is the 
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7.3 How to separate the corks. 

GD GD 0 0  
(a) (b) (c) 

7.4 Two circles can be linked (a) or unlinked (b), and only unlinked circles can be 
separated (c). 
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way one crossing changes from over to under - but that tiny change 
means you can't undo the resulting link." 

"I've seen magicians unlink metal rings on stage," I said. 
"Yes. And you're impressed because you know it can't be done. You 

know there has to be a trick, but you can't work out what it is, can you?" 
"No." 
"And I'm not going to tell you, either. I value my membership of the 

Magic Circle too much." 
"I've always wondered if there's some special way to move the rings." 
"No, they're trick rings, I'll give that much away. They must be, 

because you can prove mathematically that two linked rings can't be 
unlinked. It's impossible to move the circles in figure 7.4(a) to get 
figure 7.4(c) by a continuous deformation. That means you can't break the 
circles or pass them through each other: all you can do is stretch them, 
compress them, and bend them. Incidentally, even after they've been 
distorted in shape, a topologist still refers to them as circles - and so will 
1." 

"I've always been sure it couldn't be done," I said, "but I didn't know 
you could prove it." 

"Then you're in for a treat, because I'm going to show you. The idea 
is to find some property of the linked circles that doesn't change when 
they're continuously deformed, but which the unlinked loops don't 
have. Can you think of one?" 

I thought hard. "Urn . . . Being linked together?" 
"Brilliant, but not very helpful. I may be asking you to reason about 

circles, but I won't accept circular reasoning! I want something more 
definite than that. Perhaps it will help if you look at an example." He 
drew figures 7.5(a) and (b). "Do you agree that you can deform these two 
links continuously into each other?" 

"Yes . . .  You just push a little loop out from the black circle and feed 
it over the top of the white one." 

"Excellent! And if I give you any pair of circles, all tangled up -
coloured black and white, say, in case we need to keep track of which is 
which - is there any other way you can use a continuous deformation to 
change the way one of them overlaps the other?" 

"Well, you can undo the move we've just been talking about, but I can't 
think of anything . . .  Oh, you could poke a little loop of the black circle 
under the white one." 

"Good." 
"Or undo that move too." 
"Excellent. So there are just four types of move which will change the 

way one circle crosses the other. Let's call them basic moves. We either 
poke a loop across, or pull it back (figure 7.6). As far as the way the circles 
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(b) 

7.5 Two links thnt can be deformed into each other. 

overlap each other is concerned, any continuous deformation just 
produces a series of basic moves, OK?" 

"OK." 
"Now, I want you to think about the number of crossings. How does 

a basic move change that?" 
"It adds two. Or subtracts two. Oh! I see! If the number of crossings is 

even, it has to remain even! Or if it's odd, it has to remain odd!" I was 
getting excited now. "For two unlinked loops, like figure 7.4(c), there are 
no crossings, and zero is an even number! But for two linked loops, there 
are two crossings, and . . .  Oh, bother!" 

"Two is an even number as well." 
"Yes. That's a pity. It doesn't work. If it had been an odd number for a 

pair of linked circles, that would have done it! Because you can't change 
an odd number into zero by adding or subtracting twos; it has to stay 
odd." 

He nodded. "You're nearly there. Think about the number of crossings 
where the black circle goes over the white one. Ignore those where it goes 
under." 



- . - .. .. .. 
-
: 

7.6 The four basic moves thnt chnnge the way two circles overlap. 
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"Let's see, then . . .  Well, if I do a basic move that pokes a loop of black 
circle over the white one, I add two to that number. If I undo the move, 
I subtract two. If I do the other type of basic move, poking a loop under 
the white circle . . .  the number stays the same. Great! So the number of 
times the black circle goes over the top of the white one either stays the 
same or changes by two. If it starts out even, it stays even; if it starts out 
odd, it stays odd . . .  Yes! And for figure 7.4(c) it's zero, which is even; but 
for figure 7.4(b) it's one, and that's odd!" 
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"And that's the proof," said Maddox. "It's one of the topologist's 
favourite tricks - playing off even against odd. You'd be surprised how 
powerful an idea it is. But there's an even more powerful idea involved. 
What you've actually done is define a topological invariant. That's 
something that you can calculate, and which stays the same when you 
deform an object continuously. If you take two objects for which the 
invariant is different, then you obviously can't deform one continuously 
into the other." 

"Or else the invariant would be the same . . .  And it isn't. Clever!" 
"Here the invariant is the parity of the number of times the black circle 

goes over the top of the white one. The parity of a number is whether or 
not it is even or odd. That's what I meant when I said it was a parity piece. 
Not so easy to think of, is it? And most invariants in topology are much 
harder to find than our parity invariant." 

He drew another diagram (figure 7. 7). "Here's a case in point. For this 
pair of circles, the number of times the black circle crosses over the top of 
the white one is four, so the parity invariant is 'even' . So is the parity 
invariantfortwo unlinked circles. Does that mean we can undo the link?" 

7.7 A link with even parity invariant . . .  Can it be undone? 

"Yes, of course. Let me try . . .  Hmm, it's kind of hard to see . . .  I don't 
know." 

"Let me put it another way. If you see a black bird and a yellow bird, 
they can't be the same species. But if you see two black birds, does that 
mean they necessarily belong to the same species?" 

"No. They might be a crow and a raven." 
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"Right. Colour is an invariant of bird species - well, provided you 

ignore things like budgerigars which can come in several colours. Birds 
of different colours are necessarily of different species, but birds of the 
same colour might not be the same species. There again, they might: 
colour isn't a good enough invariant to decide the question. 

"In the same way, if two links have different invariants, they have to 
be topologically different; but that doesn't mean that if they have the 
same invariant, they are topologically the same. So even parity doesn't 
mean we can undo the link; what it means is that the parity invariant isn't 
good enough to prove that we can't." 

I found that harder to follow for links than it had seemed to be for 
birds, and I said so. 

"All right, let me give you a more mathematical analogy. Suppose I 
'defourm' numbers by adding or subtracting 4 repeatedly. I want to 
know whether I can defourm 3 into 5. Now the parity of the number is 
again an invariant: adding or subtracting 4 keeps odd numbers odd and 
even numbers even. And 3 and 5 have the same parity. So can I defourm 
3 into 5?" 

"Well . . .  3+4 is 7, that's no good . . .  7+4 is ll ; then l take away 4 again 
to get - bother, it's 7 again . . .  " 

"Exactly, and in fact it can't be done. But the parity isn't a powerful 
enough invariant to prove that. There's a better one. I can assign to each 
number an invariant equal to either 0, 1, 2, or 3; namely, its remainder 
when divided by 4. Let me call that the quadruplexity, by analogy with 
'parity'." 

"Ah," I said sagely. "Arithmetic modulo 4." 
"Quite. Now, you can check that the quadruplexity is also an invariant 

under 'defourmation' . The number 3 has quadruplexity 3, but 5 has 
quadruplexity 1 .  So they're definitely not defourmable into each other. 
Do you see what I've done?" 

"I'm still confused." 
"The original invariant, parity, wasn't good enough to distinguish 3 

and 5. They have the same parity. But by finding a better invariant, namely 
quadruplexity, I can show that in fact they are not defourmable into each 
other." 

"Got it." 
"Which means you have to be careful with invariants. You can use 

them to tell the difference between things, when they work; but when 
they don't, that doesn't mean the things are the same." 

"I see. Is there anything better than quadruplexity? What about 
octuplexity, remainder on division by 8, or hexadecuplexity . . .  Oh, no, that 
won't . . .  " 
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"Calm down, you're getting over-excited. No, quadruplexity is a 
complete invariant. It's so good that two numbers can be defourmed into 
each other if and only if they have the same quadruplexity invariant." 

"Yes, but octuplexity will be a better invariant if I transleight numbers 
by adding or subtracting 8 repeatedly . . .  " 

"Concentrate on the problem, you're entering a manic phase." 
I did. Eventually light began to dawn. "You're telling me that there's 

a better invariant than the parity invariant for links, and it tells me that 
I can't change figure 7. 7 into figure 7.4(c). Let me guess: quadruplexity 
of the number of crossings?" 

"No, not as easy as that. What you need is one of the first topological 
invariants ever discovered, and it's called the linking number. The way 
you find it is that you imagine a membrane stretched across the white 
circle, like a paper hoop. You put an arrow on the black circle and see 
where it passes through the membrane, following the direction of the 
arrow along the circle. If it cuts through from back to front you count + 1,  
if it  cuts from front to back you count - 1 . Then you just add those + 1 '  s 
and - 1' s at all places where the black circle cuts through the membrane. 

7.8 Calculating the linking number. 
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"For instance, in figure 7. 8 with the arrow as shown, the black circle 
passes through the membrane three times from back to front and one 
time from front to back, so the linking number is 1 + 1 + 1 - 1 = 2." 

"That's interesting," I said. "It sort of counts how many times the black 
circle wraps round the white one." 

"Good. Now the linking number is an invariant. Well, you have to 
choose how to align the arrow, and if you reverse the arrow the linking 
number changes sign, so that after calculating it you should change the 
sign to + for safety. But that's easily taken care of. The question is, do you 
see why it's an invariant?" 

"No," I told him. I'm a great believer in frank and meaningful 
discussions. 

"It's basically the same trick again. The only way to change the linking 
number is to create or destroy two cutting points by pulling a loop 
through figure 7.9. But when you look at the directions . . .  " 

(a) (b) 

7.9 The linking number is unchanged if a pair of cutting points is created or destroyed. 

"You see that the two points count as + 1 and - 1, because the directions 
are opposite!" The words came out in a rush, I saw it all so clearly. "So 
when you add up to get the linking number they just cancel out! And that 
means the linking number itself doesn't change!" 

"Exactly. Isn't it amazing, the lengths that you have to go to to prove 
something so 'obvious'? But it isn't really obvious at all. Experience tells 
us it's true, but it doesn't give logical reasons why it has to be true." 
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(a) 

(c) 

(e) 

7.10 Six links. Two are deformable into each other. Which? 

(b) 

(d) 

(f) 
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Figure 7.10 shows six links. Can you calculate their linking numbers? 
Two of them can be deformed into each other: which? 

I asked whether the linking number is a complete invariant. If two links 
have the same linking number, can you deform one continuously into the 
other? Matt M. Maddox pointed out that a particular case might be worth 
considering: "Can you find two circles, with linking number zero, which 
nevertheless can't be unlinked?" 

If you can, then the linking number isn't a complete invariant. In fact, 
it's not. Indeed, finding a complete invariant for links is still an unsolved 
problem. However, there are several new link invariants around, one of 
which was discovered simultaneously by five independent groups of 
mathematicians, and one of them might just tum out to be complete, even 
though nobody really believes it will . . .  But that's another story, well 
told by Lickorish and Millett: see "Further Reading" . Anyway, can you 
answer Matt M. Maddox's question about linking number zero? 

I couldn't, I'll tell you. After twenty minutes I wiped my brow with a 
handkerchief, and drained the last of the wine. "All that mathematics 
from two corks! I wonder how much you'd find in a bottle!" 

''Many have found poetry in a wine bottle," said Maddox. "Not much 
mathematics, though - you need to keep a clear head for that. Mind you: 
'A loaf of bread, a glass of wine, and thou . . .  ' Omar Khayyam was a 
pretty good mathematician - he found a geometric method for solving 
cubic equations. Which reminds me- there's an American manufacturer 
of alcoholic beverages who puts some rather special links on its label 
(figure 7.1 1) .  They're known as Borromean rings, because they come from 
the coat of arms of the Borromeo family." 

7.11 Borromean rings. One cut separates the lot. 
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I stared at the label. "Doesn't look very special to me . . .  Just three 
circles, all linked up." 

"Hmm. If you have three circles, all linked up, how many do you have 
to cut to get three separate circles?" 

"Two." 
"Why?" 
"Each cut separates off one circle." 
He produced three loops of string, arranged just like the Borromean 

rings, and a pair of scissors. He jiggled the rings up and down to show 
they were all joined together. "Cut one loop,'' he said. I did. 

All three rings fell to the table, separately. 
"Ah, you cheated. If you have three circles in a row, you can cut the 

middle one, and they all fall apart." 
He handed me another set of Borromean rings. "Fine. You choose 

which one to cut." 
"Well, I want the one on the end . . .  funny, there isn't an end . . .  " 
"It's symmetrical," he pointed out. "Whichever ring you cut, all three 

will separate." 
"Huh," I said. "Well, I bet you can't do that with four rings!" 
He looked at me, once more inscrutable. 
"Do you want to bet £5?" he said. 

7.12 The Whitehead link has linking number zero but cannot be separated. 
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ANSWERS 

The six linking numbers for figure 7.10 are a== 1, b==2, c==4, d==S, e==O, f==2. 
So links b and fare the only ones that could possibly be deformable into 
each other, and indeed a little experiment shows that they are. 

Two circles with linking number zero, which are nevertheless linked, 
are shown in figure 7.12. This is known as the Whitehead link. 

Not only can you find a link offour circles which falls completely apart 
when only one is cut: you can find such a link with n circles for any n. 
Figure 7.1 3  shows how this is done for seven circles: the general pattern 
should be obvious. Elegant answers for four and five rings, different 
from mine, were shown to me by C. van de Walle of Evreux (figure 7.14). 

7.13 Generalized Borromean rings. Remove any ring (e.g. the shaded one) and the rest 
slide apart. 
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7.14 Elegant solutions for four and five rings, due to C. van de Walle. 

FURTHER READING 
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Close Encounters of the Fermat Kind 

I've told you about my garden, behind the raspberry canes. There's a 
space-time warp there. It leads, among other things, to the planet 
Ombilicus, a billion light-years from Earth in the general direction of 
Orion's right eyeball. Where-and when-you end up if you pass through 
it seems to depend upon what you're thinking about when you enter it. 
I've been doing a few experiments to see whether I can fine-tune the 
position and timing. I haven't quite got the hang of the thing yet - last 
week I narrowly avoided emerging in ancient Jericho just as the walls 
collapsed - but I'm getting there. 
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Yesterday I decided to drop in on a mathematician whom I greatly 
admire, namely Pierre de Fermat, who was born in 1601 and died in 1665. 
He lived in Toulouse, and was a lawyer. He's best known, of course, for 
the one theorem that he didn't prove (or did he?), namely Fermat's Last 
Theorem. 

You've probably heard the story. Fermat owned a copy of the 
Arithmetica of Diophantus, an early algebra book. Equations that must be 
solved in integers (whole numbers) are called Diophantine equations in his 
honour. At one place Diophantus explains how to find right-angled 
triangles whose sides are all integers. By Pythagoras' theorem such 
triangles have sides (a,b,c) such that a 2 + b2 = c � There are infinitely 
many integer solutions of this equation, such as (3,4,5) and (5,12,13). 
Anyway, Fermat started thinking about sums of two perfect squares 
being perfect squares, and wondered whether the same sort of thing can 
be done for cubes, or biquadrates (fourth powers), or whatever. Can two 
perfect cubes add up to another perfect cube? 

He decided it was impossible, and wrote as much in the margin of his 
book. "It is impossible to separate a cube into two cubes, or a biquadrate 
into two biquadrates, or generally any power except a square into two 
powers with the same exponent. I have discovered a truly marvellous 
proof of this, which however the margin is not large enough to contain." 

To this day, nobody has been able to reconstruct the missing proof; 
neither have they found any example to show that Fermat's Last Theorem 
is false. The problem is notorious. A huge prize was once on offer for the 
answer, but its value was wiped out by inflation, and it has now been 
replaced by something financially more modest. It's named the "last 
theorem" because it is the last remaining unsolved riddle from those that 
Fermat posed for his successors. Many have tried, but none have yet 
succeeded. 

Modern mathematicians find it hard to believe that Fermat knew 
something that they don't-although personally it wouldn't surprise me 
in the least - and they tend to assume that if Fermat thought he had a 
proof, there must have been a mistake in it. Hundreds, maybe thousands 
of plausible but fallacious proofs have been invented since, and it's 
certainly possible that Fermat blundered into one of these traps. But 
Fermat was one smart cookie: maybe he was right. 

Or maybe not. Which? Most people consider it impossible to resolve 
that question: there's no evidence either way. But then, most people don't 
have a space-time warp behind the raspberry canes. My plan was to go 
back to Fermat's time and ask him myself. Thinking that he might be 
curious about the fate of his conjecture, I collected together some 
information on its current status to take with me. 
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Then I fixed my mind firmly on Fermat's Last Theorem, and walked 
into the space-time warp. 

It worked, I must say, like a charm. I came out in a comfortable room, 
full of antique furniture, with a log fire blazing in the hearth. A bewigged 
figure was sitting at a desk, quill pen in hand, writing in a notebook. I 
cleared my throat, to catch his attention, and he turned. 

"Whence came you?" he cried, in some alarm, leaping to his feet and 
brandishing his quill pen like a club. "Art thou a thief, come to steal my 
valuables?" 

"No, Monsieur de Fermat," I replied, keeping pretty close to the warp 
just in case he was armed with a pistol or attempted to knock me down 
with his feather. "I am an admirer from the distant future." 

Fermat considered this. He looked at my clothes - old jeans and a red 
sweatshirt bearing the legend "Phi Slama Jama: Texas's Tallest Fraternity''. 
(It refers to the University of Houston basketball team. I spent a year there 
once.) "Mayhap thou art right," he said. "Thy dress is outlandish and not 
from this time, and thy speech is atrocious. But then, thou'rt English, so 
that proveth little. Yet there is a strangeness to thy accent, even so." Then, 
ever the mathematician, he darted a penetrating question. "Canst thou 
prove thy claim?" 

I had anticipated this, and I'd brought a programmable calculator 
with me. Ten minutes showing him how to generate Fibonacci numbers 
or solve cubic equations to ten decimal places, and he was convinced. 

"Why art thou here, Traveller in Time?" 
I explained that in the far future he was an extremely famous 

mathematician. This greatly surprised him. "But 'tis merely a pastime of 
mine, a small conceit to while away the hours!" 

I waved him to silence and told him not to be so modest. "Pierre, I've 
come to ask you about your Last Theorem," I said. 

"My what?" 
"You won't know it by that name, of course. The theorem that it is 

impossible to resolve a cube into two cubes, or a biquadrate into two 
biquadrates, or . . .  " 

He looked baffled and pulled at his wig. ''That is an idea of great 
interest. I have never contemplated the question: it hath a certain je ne sa is 
quoi . . .  But I know not what. I will jot it down in my copy of Diophantus' 
Arithmetica . . .  " 

That's the problem with time travel-you never know what paradoxes 
you may cause. Here was I, coming to ask Fermat about his theorem, and 
now he'd learned about the problem from me! 

He looked at the clock on the wall and leaped to his feet. "Forgive me, 
but I have an urgent appointment in court. Perhaps thou wouldst pay thy 
respects again, some time in the future? A week from now?" And he was 
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gone. I took one final lookat his study, and backed out through the warp, 
wondering what I'd done. Would the universe still exist? 

You'll be glad to hear it did. I convinced myself that by going back in 
time and putting the idea into Fermat's head I'd probably saved the 
universe from paradoxical dissolution. Well, if Fermat wasn't going to 
think of it by himself, someone had to, otherwise history would have been 
changed . . .  

The great thing with space-time warps is that you don't have to hang 
about. Setting my mental clock for a week later than my first attempt, I 
turned on my heels . . .  

Fermat was expecting me. "Good day, Traveller in Time! Thou hast 
posed a pretty riddle, I warrant! Seven days and nights hath it troubled 
my mind. 'The equation xn + yn = zn is impossible in integers, when n is 
3 or more.' I can find no instances where thy conjecture . . .  " 

"No, no, your conjecture! Otherwise the universe may dissolve!" 
"Very well, where my conjecture faileth. I have found several instances 

where it faileth but by a hair's breadth. Thus, 

93 + 1d = 1 729, 1 23 = 1 728, 

so that the equation 

3 3 3 x + y = z + 1  

hath a solution. For 

3 3 3 x + y = z - 1  

I have also found solutions." Can you find one? Or any other "Fermat near 
misses": solutions to these two equations? And what about / + y

4 = z4 ± 1 ?  
"And I have found innumerable other curious relationships between 
powers," he said (box 8.1). "But," he went on, "I can find no cube that is 
exactly divisible into two cubes. I can find a cube that divideth into two 
squares, and a square that divideth into two cubes." (Can you?) "I have 
found a proof of impossibility in one case, namely that of biquadrates." 
That was quick, I thought. "The idea is an amusing one, I will admit. I call 
it . . .  " 

"The method of infinite descent, yes." 
"Thou knowest it?" 
"I told you; in the future you're famous. And so is your proof for fourth 

powers." 
He shook his head in wonderment. "But I am a mere amateur." 
"Blaise Pascal called you 'the greatest mathematician in all Europe'." 
"Pascal is a flatterer; he's always after something." He sighed. "The 

future . . .  I would give much to know what new wonders of mathematics 
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will b e  found . . .  And to possess a 'programmable calculator' such as 
thine." 

Box 8.1  

1334 + 1344 = 1584 + 594 

14 + 84 + 124 + 324 + 644 = 654 

44 + 64 + 84 + 94 + 1 44 = 154 

304 + 1204 + 2724 + 3154 = 3534 

14 + 24 + 94 = 34 + 74 + 84 

54 + 64 + 1 14 = 14 + 94 + 1 04 

84 + 94 + 174 = 34 + 134 + 164 

74 + 284 = 34 + 204 + 264 

514 + 764 = 54 + 424 + 784 

45 + 55 + 65 + 75 + 95 + 1 1 5 = 125 

495 + 755 + 1075 = 395 + 925 + 1 005 

36 + 196 + 226 = 1 06 + 156 + 236 

"Pierre, I'd love to give you one, but I'm afraid it might cause a time 
paradox, so I daren' t. But I can fill you in on what's happened to your Last 
Theorem." 

And I told him how various of his successors had proved special cases 
(table 8.1), and that his conjecture was known to be true for all powers up 
to and including the 125,000th. He opened his copy of Diophantus, took 
up his pen, and began writing rapidly in what I perceived to be an 
enormous margin, taking down everything I said in some legal 
shorthand . . .  It made me feel very nervous, because history records no 
such annotations, but it seemed impolite to stop. 

"The most dramatic new result in my time, " I told him, "is the proof 
of the Mordell conjecture in 1983, by a young German called Gerd 
Faltings. Mordell conjectured that for a whole class of Diophantine 
equations, including yours, the number of solutions is finite. Faltings 
found an extremely advanced and difficult proof. So for all n ;:: 3, if there 
are any exceptions to your Last Theorem, there are at most a finite 
number of them." 

Not everyone appreciates that, even if you don't know the exceptions 
exactly, it's a great step forward to know that their number is finite. It's 
important to know that, because then you can hope to set limits on their 
sizes, after which in principle a trial-and-error check would finish the 
problem altogether. In practice the limits are often too large for this to 
work, but by being more clever you can still hope to get somewhere. 
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Indeed, by using Faltings' s result, D. R. Heath-Brown proved in 1987 that 
Fermat's Last Theorem is true for "almost all" exponents n. That is, as n 
tends to infinity the proportion of values for which the Last Theorem is 
true tends to 100 per cent. That's a strong result: instead of saying that for 
each n there may be finitely many solutions, it says that for all but a very 
rare set of exponents n there are no solutions. As I explained this, Fermat 
again scribbled copious notes in the wide margins of his Arithmetica, and 
I squirmed. 

Table 8.1 Milestones in Fermat's Last Theorem 

Date Discoverer 

c.1640 Pierre de Fermat 
c.1640 Pierre de Fermat 
1738 Leonhard Euler 
1738 Leonhard Euler 
c.1815 Sophie Germain 

1828 Peter Lejeune Dirichlet 
1830 Adrien-Marie Legendre 
1832 Peter Lejeune Dirichlet 
1859 Ernst Eduard Kummer 

1893 Dimitri Mirimanoff 
1905 Dimitri Mirimanoff 
1909 A. Wieferich 

1922 Leo Mordell 

1978 5. 5. Wagstaff 
1983 Gerd Faltings 

1987 D. R. Heath-Brown 

xn + yn = znimpossible . . .  

n = 3  
n = 4  
n == 3 (independently) 
n == 4 (independently) 
if n �. both n and 2n+ 1 are prime, 
and n does not divide xyz 
n ::: S 
n = 5 (independently) 
n ::: 14 
n a "regular" prime: in particular 
n $ 100 except 37, 59, 67 
n = 37 
n $ 257 
n an odd prime not dividing xyz 
with n 2not dividing 2 n - l  - 1 
(the second condition holds for all 

9 n < 3 x 1 0  except 1093 and 3511)  
with finitely many exceptions for 
any n � 3 provided the "Mordell 
conjecture" is true 
n :5 125,000 
with finitely many exceptions for 
any n � 3  
for "almost all" n 

"I have proved a small number of results on the finitude of solutions 
myself," he said modestly. "My favourite is that the only cube exceeding 
a square by 2 is 33 = 52 + 2 ." 

"In that case you'll like W. Ljunggren's theorem that 1 = 1 2
and 

57 1 2 1  = 239
2 

are the only squares which, when increased by one and 
halved, yield fourth powers." 
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He looked fascinated. But then his expression changed. "But there 
must be some error in thy description of this work of Monsieur Faltings. 
If xn + l = zn then for any constant k we obtain (kx)n + (ky)n = (k z( 
Thus one solution generateth an infinity." 

"That's true," I said. "I meant infinitely many solutions without a 
common factor." 

"Ah." 
"But actually, that's not the way to think of it. The way Mordell and 

Faltings thought about it is to notice that the equation xn + yn = zn
is 

equivalent to C)
n + ( ; )

n = 1 . Putting : = X  and ; = Y you see that 
solving xn + yn = zn in integers is equivalent to solving x

n + yn = 1 in 
rational numbers." 

"Yes, I am aware of that. Much of my work has been about solutions 
of equations in rational numbers." 

"Multiplying x, y, and z by a constant k does not change X or Y. So the 
numberofrationalsolutionsto Xn + Yn = 1 is finite, without any quibbles. 
From that point of view," I continued, "your Last Theorem is rather 
curious. TheequationXn + yn = 1 defines a curveinthe (X,Y) coordinate 
plane which nowadays we call the Fermat curve of degree n." When n is 
even, Fermat curves are like squarish ovals; when n is odd they extend 
to infinity (figure 8.1). "The Last Theorem says that even though points 
(X, Y) with both coordinates rational are dotted densely throughout the 
plane, the Fermat curve winds its way between such rational points, never 
hitting any of them." 

"But that proveth little," he said . "For indeed there are many such 
curves. Thus the straight line Y =X+ .Y2 cannot meet any rational point. 
If it were to do so, then v2 = Y -X would be rational." 

"Yes, but the coefficients in the Fermat equation are themselves 
rational, whereas.Y2 is not." 

"But a simple trick converteth the line Y -X =V2 into ( Y - X) 2 = 2, that 
is, X 2 + Y 2 - 2XY = 2, and now no irrationals appear in the equation." 
(Figure 8.2) 

"True," I said. "It shows how careful you have to be with this kind of 
thing. At any rate, Faltings' result is that each Fermat curve can hit only 
a finite number of rational points." 

Fermat thumbed the pages of his book. "Thy question hath set me to 
muse also on related matters," he said. "For instance, if it be not possible 
for two cubes to sum to a cube, might it be possible for three? And of course 
it is; in fact 33 + 43 + 53 = 6� And that leadeth me to conjecture that for all 
n it is possible for n nth powers to add to an nth power, but not for n-1 to 
do so." 

He scribbled excitedly in the margins, to my growing horror. "But 
that's Euler's conjecture!" I yelled. "It came years after yours! Please, 
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y 

----+-------------�-------------+----------� X 

xn + yn = 1 

8.1 Fermat curves of various degrees. If the Last Theorem is true, no Fermat curve 
contains any point with both coordinates rational numbers. 

whatever you do, don't put it into print! The paradoxes would be too 
dreadful!" 

"Unless," Fermat mused, "the printed versions failed to survive to thy 
time. Then thou wouldst not know that I had anticipated Monsieur 
Euler." 

"Maybe." I wasn't happy. What about all those marginal annotations he 
was making? And why had he complained about the margins of his book, which 
were absolutely vast? I tried to distract him. "In my time it has been proved 
that Euler's conjecture is false." 
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8.2 Curves that pass through no rational points can occur. The curve Y2 - 2XY 
+ X2-2 = 0, which is just the line Y = X  +'1/2, is an example. The rational points, illustrated 
schematically by dots, are dense in the plane. 

"Now that is truly news of some import." 
I explained that in 1966 L. J. Lander and T. R. Parkin had found the first 

(and until 1988 the only) counterexample to Euler's conjecture: four fifth 
powers whose sum was again a fifth power (box 8.2). 

"How did they find it?" he asked, as he copied the numbers into the 
margin. I groaned inwardly. By now he had filled most of the margins of 
his book. 

"By exhaustive computer search." 
"Computer?" 
"A giant programmable calculator." 
"Oh. I had hoped there might be some interesting mathematics 

involved." 
"There is! In 1988 Noam Elkies of Harvard University found another 
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Box 8.2 

275 14348907 

845 4182119424 

1 1 05 16105100000 

1355 = 4161 5795893 

1445 = 6191 7364224 

counterexample: three fourth powers whose sum is a fourth power 
(box 8.3). And that did involve some genuine mathematics, not just a 
computer search." 

Box 8.3 

26824404 = 51 774995082902409832960000 

153656394 = 55744561387133523724209779041 

1 87967604 = 124833740909952854954805760000 

206156734 = 180630077292169281088848499041 

"Tell me more." 
"Well, Elkies started the same way Faltin,ps did: instead of looking 

for integer solutions to theequationx4 + y4 + z = w4 hedivided outby w4 

and looked at the surface r 4 + s 4 + t 4 = 1 in coordinates (r,s,t). It's kind of 
a crossbetween anellipsoid and a cube (figure8.3). An integer solution to 
4 4 4 4 1 d t • 1 1 • X y t z f 4 x + y + z = w ea s o a rahona so uhon r = w ,  s = w , = w o r + 
4 4 1 C  1 . • 1 1 · f 4 4  4 1 s + t = . onverse y, g1ven a rahona so uhon o r + s + t = , you 

can assume that r,s,t all have the same denominator w by putting them 
over a common denominator, and that leads directly to a solution 
to x4 + y4 + z4 = w4." 

"Yes, yes, that is clear." Well, to people like Fermat it doubtless is. 
"A Russian mathematician, V. A. Demjanenko, found a rather 

complicated condition for a point (r,s,t) to lie on the related surface 
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s 

r 

8.3 Elkies ' surface r'+s4+f1 = 1 .  Unlike the Fermat curve X4+Y4 = 1, points with all 
three coordinates (r,s,t) rational are dense on this surface. 

Box 8.4 

Dernjanenko showed that r 4 + s 4 + t 2 = 1 if and only if there exist x, y, and 
u such that 

r = x + y  
s = x - y  

( u2 + 2 )/  = - (3u2 - Bu + 6  )x2 - 2 ( u2 - 2 ) x - 2u 

( u2 + 2  ) t = 4 ( u2 - 2  ) x2 + 8u x +  (2 - u2) 

r 4 + s 4 + t 4 = 1 (box 8.4). To solve the problem it is enough to show that t 
can be made a square. A series of simplifications shows that this can be 
done provided the equation 

Y
2 = -3 1790X4 + 36941X 3 - 56158X 2 + 28849X + 22030 
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has a rational solution. There is an extensive theory of such equations, 
known as elliptic curves. In particular there are conditions under which no 
solution can exist. These conditions did not hold in this case, which 
showed that such a solution might possibly exist. At this stage Elkies tried 
a computer search, and found the solution 

(X Y) = (- 31 3073 1 278 ) 
' 467 ' 4672 . 

From this he deduced the rational solution 

( ) ( 1 8796760 2682440 1 5365639) r, s,t  = - 206 1 5673 , 2061 5673 , 206 1 5673 

This led directly to the counterexample to Euler's conjecture for fourth 
powers, namely 26824404 + 15365639� + 187967604 = 206156734." 

"So even here it was necessary to use one of these 'computers'?" 
Fermat said, rather grimly, while his quill flickered ominously down the 
margin. "Do the mathematicians of thy time not use their own heads any 
more?" 

"Most of the time. Even here Elkies used his head first, and then used 
the computer in a more intelligent fashion than just a trial-and-error 
search. Computers are tools to help mathematicians, not replacements 
for them." 

"I see. Are there other solutions?" 
"Yes. In this case infinitely many. The theory of elliptic curves provides 

a general procedure for constructing new rational points from old ones, 
using the geometry of the curve." (Figure 8.4) 

"That is an ancient trick. I have seen its like in the work of Monsieur 
Bachet." 

"It does go back a long way, although I doubt you would recognize its 
most general form, the theory of Abelian varieties. But I digress. By 
applying a variant of this construction, Elkies proved that infinitely 
many solutions exist. In fact he proved that there are many rational points 
on the surface r 4 + s 4 + t 4 = 1 ; so many that they are dense. That is, any 
patch of the surface, however tiny, must contain a rational point. The 
numbers get very big, though. The second solution generated by this 
geometric construction is . . .  " (I wrote down what is in box 8.5). 

"Those are impressively large numbers. And I note with some 
satisfaction that they are found from the first solution by pure thought, 
not by computer search." He started to copy down the four vast numbers, 
but stopped. He had run out of space. 

"There's a curious twist to the tale," I said, hoping to divert his 
attention. I had to grab that book! But if I stole it, then posterity would never 
know that Fermat had had a copy of the Arithmetica . . .  Paradox lost, 
paradox regained . . .  Best to keep talking. "After Elkies had discovered 
there was a solution, Roger Frye of the Thinking Machines Corporation 
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tangent 

8.4 If a straight line is drawn between two rational points on an elliptic curve, it meets 
the curve in a third point which must also be rational. !fa tangent is drawn to an elliptic 
curve at a rational point, it meets the curve again in a rational point. This chord and 
tangent process thus produces new rational solutions from old ones, an application of 
geometry to number theory. 

did an exhaustive search. It took 100 hours on Connection Machines . . .  " 
"Thinking machines? Connection machines? Is the world of the future 

nothing but machines?" 
"Pretty much. We live in them, eat out of them, drive around in them, 

fly in them . . .  " 
"Fly? You jest." 
" . . .  And use them to talk to the other side of the Earth. A Connection 

Machine is a supercomputer, able to perform millions of calculations 
every second. By using this machine-gun to swat a gnat, Frye found a 
smaller solution: indeed the smallest possible solution." (Box 8.6) "So the 
computer won in the end." 
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Box 8.5 

Elkies' second solution. If 

x =  1 439965710648954492268506771 8331 7526785020142 
661530044221 8292336336633 

y = 441726469899453849694359748975495284585467249 
71 790478988641 24209346920 

z = 903396457748253238805948242939845729100494792 
5005743028147465732645880 

w = 91 61 78183003543684783245239826726603822700296 
2257243662070370888722169 

then 

4 4 4 4 x + y + z = w 

"Remarkable. Millions . . .  But this tale setteth me thinking again. I 
could refine Euler's conjecture. Thus for each n let s(n) be the smallest 
number such that there exist s(n) nth powers whose sum is an nth power. 
Thus s(2) = 2 because two squares can add up to a square. And s(3) = 3 
because three cubes can sum to a cube, but two cannot. The conjecture of 
Monsieur Euler is that s(n) = n, but this thou sayest is false. In fact s(4) = 
3 because Monsieur Elkies' example proveth that s(4) � 3 and my theorem 
for biquadrates proveth that s(4) is not 2." 

"And Lander and Parkin's result gives s(S) = 4," I said. 
"Objection!" he snapped, ever the professional lawyer. "It proveth 

only that s(S) is 4 or less." Fermat knew a loophole when he saw one, 
legal or mathematical. "By what thou hast told me, we know that s(S) is 
3 or more . . .  Can three fifth powers sum to a fifth power?" 

Box 8.6 

958004 = 84229075969600000000 

2175194 = 2238663363846304960321 

4145604 = 295358574001 92040960000 

4224814 = 31 858749840007945920321 
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"Mayhap. But in any case it is an interesting problem: to calculate s(n) 
for each n. There are some easy results, of course: for example s(6) is at 
most 64, and in general s(n) is at most 2"." 

"Because 26 
= 16 + . . .  1

6 
with sixty-four 1' s, and in general 

2" = 1 n + . . .  1 n with 2" 1 's." 
"Exactly. I cannot believe such crude estimates are the best possible, 

although they have the virtue of proving that s(n) is finite for every n." 
(Can you improve on these estimates? For example, if you can find ten 

seventh powers whose sum is a seventh power, you will have shown that 
s (7) � 10. That would be a lot better than Fermat's estimate of 128. You 
might like to experiment.) 

So excited was Fermat about all this that he began pulling books off the 
shelf, looking for further margins to annotate. I leaped forward, grabbed 
the copy of Diophantus, and tore huge strips off the margins to obliterate 
everything he had written, throwing the sheets into the fire. I had to avoid 
a paradox at all costs! 

It took a little time to calm Fermat down, but eventually he saw why 
I had acted in such a high-handed manner. He sat, staring into the flames, 
his expression unreadable. 

Then his face . . .  changed. 
It was like sunrise breaking through a storm. 
"A proof!" he cried. "I have a proof of the Last Theorem! 'Tis ingenious 

but elegant . . .  Let me inscribe it in the margin! Confound thee, Time 
Traveller! Thou hast torn my margins to shreds, there is no longer room 
to write the proof! Oh, where did I put that sheaf of legal documents?" 

I tiptoed from the room, back through the warp. 
Time paradoxes are funny things. 

ANSWERS 

Fermat Near Misses 
63 + 83 = 93 - 1 is an example for i + y

3 
= z3 - 1. T. Wightman of Bore­

hamwood, England, sent me two other examples in May 1988: 

7203 + 24i = 7293 - 1 
7293 + 2443 = 7383 + 1 

which suggest interesting patterns. In particular 729 = 36, so these solve 
the remarkable equations 

3 3 18 
x + y = Z - 1  

18 3 3 x + y = z + l .  
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In fact there are infinitely many solutions to the equations i + l = z 3 ± 1 . 
To find them, consider more generally the equation i + y3 = z3 + w3

• It is 
known that the general rational solution to this is given by 

x = k [ 1 - (a - 3b) (a 2 + 3b2
) J 

y = k [<a + 3b) (a 2 + 3b2) - 1] 

[ 2 2 2] 
z = k (a + 3b) - (a + 3b ) 

w = k [ (a 2 + 3b 2) 
2 
- (a - 3b) J , 

where a, b and k are rational. Choose them so that one of the variables is 
±1 and all four are integers. (For instance, let k = 1, a =  3b to make x = 1.)  

4 4 4 
x + y + z ± l 
I don't know any solution to this, but I also don't know of any proof that 
none exist. Maybe somebody already knows the answer. Some close 
coincidences that I've found by trial and error are 

l + 8
4 

= 9
4

- 64  
214 + 36

4 
= 374 - 64  

1 14 + 154 = 164 - 270 
374 + 374 = 444 + 226 
534 + 624 = 694 - 304 
1674 + 1924 = 2154 + 192. 

3 3 2 
X + y = Z 
One solution is 1

3 + i = 32• To find infinitely many, Rroceed as follows. 
Takeanytwo integers, forexample2and3. Workout l + 33 = 8 + 27 = 35. 
Multiply the original equation by 353 

to obtain 
3 3 3 4 2 2 

(2 X 35) + (3 X 35) = 35 X 35 = 35 = (35 ) . 

That is, 

703 + 1053 = 12252• 

A similar method works for any two starting numbers. 
2 2 3 

X + y = Z 
Try thesame idea. Chooseany two numbers, say: J and 2. Then e + i = 5 . 
Multiply throughout by 52 to get 52 + 102 = 53

• Again the procedure 
works for any two numbers whatever. 

5 5 5 5 
x + y + z  = w 
I have no idea whether or not this is possible! 
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This is related to a question known as Waring's problem. In 1770 Edward 
Waring stated that every whole number is a sum of at most nine cubes, 
nineteen fourth powers, and so on. Following his idea, number theorists 
defined a function g(n) to be the smallest number such that every 
number k can be written as a sum of g(n) nth powers. So Waring's 
conjecture is that g(3) = 9, g(4) = 19, and - by implication - that g(n) is 
finite for all n. This conjecture was later proved by David Hilbert. 

"Small" numbers k tend to require unusually large numbers of nth 
powers, for rather coincidental reasons. Accordingly, a more sensible 
function is G(n), the smallest number such that all but finitely many 
numbers k can be written as a sum of G(n) nth powers. A great deal of 
work has been done to find G(n). For example in 1958 J. R. Chen 
proved that G(n) � n(3 log n + 5.2). In 1984 R. Balasubramanian and 
C. J. Mozzochi improved this to get 

G(n) � log ( 108) + 3 log (n ) _ 4 

log( (•� l )) 
and other mathematicians, notably R. C. Vaughan in 1986, have improved 
on this for various small n. The best known bounds for G(n) are 

n 4 5 6 7 8 9 10 11  12 13 14 15 
G(n) � 19 21 31 45 62 82 102 120 135 150 166 181 

Obviously our function s(n) is less than or equal to G(n): just take k to be 
a very large nth power. So the table for G(n) also gives bounds on how 
large s(n) can be. However, it is likely that s(n) is smaller than G(n) for all 
n � 6. 

We know that this happens for n = 4 and 5, because s(4) = 3 and s(5) � 
4. It is also the case for n = 6 and 7, as shown by examples from The Penguin 
Dictionary of Curious and Interesting Numbers, by David Wells. As he 
remarks, a sixth power can be the sum of seven sixth powers. The 
smallest example is 

1 1416 = 746 + 2346 + 4026 + 4746 + 7026 + 8946 + 10776• 

Therefore s(6) � 7. For seventh powers, we have 

1027 = 1i + 357 + 537 + 587 + 647 + 837 + 857 + 9<i, 
showing that s(7) � 8. This is the smallest seventh power that is a sum of 
eight seventh powers. 
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X. Gonze of Lou vain, Belgium sent me the following discoveries: 

128 
= 2 X 1 1

8 
+ 3 X 58

+ 4
8 
+ 4 X 38 

+ 28 
+ 23 X 1 8 

59
= 7 X 49 

+ 6 X 39 + 19 X 19 

7' '  = 5 x 61 1 + 3 x 5 1 1 + 4 x 41 1 + 39 x 21 1  

which show that s(8) � 34, s (9) � 32, and s ( l l ) � 5 1 . 
To sum up, the best known bounds on s(n) are 

n 
s(n) 

4 5 
3 4 

6 7 8 9 10 1 1  12 13 14 15 
7 8 34 32 102 51 135 150 166 181 

The bounds for n = 10 and n � 12 come from G(n), but the pattern of 
the numbers strongly suggests that these bounds are far too big. 

Two other noteworthy results from Wells's book are as follows. The 
smallest fourth power that is the sum of five fourth powers is 

54
= 2

4 + 24 + 34 + 44 + 44
. 

The smallest fifth power that is the sum of five distinct fifth powers is 

725 = 195 + 435 + 465 + 475 + 675• 

X. Gonze also discovered that 

1256 
= 1 186 

+ 93
6 
+ 2 X 786 

+ 486 
+ 426 

+ 186 
+ 2 X 6

6
. 

These examples do not improve on the bounds for s(4), s(S), and s(6), but 
they are remarkable for the small numbers involved. 
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Pascal's Fractals 

--
----- --

- --
------...:::::::-

This is a True Life Story. No names have been changed to protect the 
innocent, since - as Kurt Vonnegut pointed out in The Sirens of Titan - the 
protection of the innocent is a matter of heavenly routine. 

Inspiration often comes from unexpected sources. Some time ago I 
was reading Gregory Chaitin's Algorithmic Information Theory, a 
remarkable and stimulating book about randomness in the logical 
structure of arithmetic. I don't want to talk about that here; in fact, I want 
to talk about regularities in the structure of arithmetic. Anyway, Chaitin' s 
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book includes a diagram, which I recognized - and a theorem, which I 
didn't. 

The diagram, and the theorem, are about Pascal's triangle. This is a 
triangular array of numbers (figure 9.1) whose left and right hand 
borders are all 1 's, and where each number is the sum of the two 
immediately above it. Symbolically, 

g d 

\+ d( 
The kth number in the nth row (counting both n and k starting at zero) is 
the binomial coefficient C(n,k). These numbers occur as the coefficients of 
/ in the expansion of (1 + x) ", hence the name. For example, 

4 2 3 4 ( 1  + x) = I + 4x + 6x + 4x + x , 

corresponding to row 4 of Pascal's triangle. Binomial coefficients are 
important throughout mathematics. 

0 

0 

2 

3 

4 

5 

6 

7 

9.1 Pascal 's triangle: each number is the sum of the two above it. 

6 

7 
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Sometimes binomial coefficients are even, and sometimes they are 
odd. How can you tell which? That's what the diagram and theorem in 
Chaitin's book were about. 

Draw Pascal's triangle as a grid of squares, like bricks in a triangular 
wall. Colour a square black if the corresponding number is odd, and 
white if it is even. To generate such a picture, it is not necessary to work 
out the exact numbers in Pascal's triangle! All you need is the symbolic 
rule above, together with the information that 

1 is odd, 
odd + odd = even + even = even, 
odd + even = even + odd = odd. 

In other words, you colour the squares down the two sides black, and 
then colour squares white if the two above them have the same colour, 
black if they have different colours. It doesn't take long to fill in the entire 
triangle. 

9.2 Patterns in Pascal 's triangle: white = even, black = odd. 

The result is figure 9.2, a dramatic and intricate pattern of black and 
white triangles. It closely resembles the Sierpifzski gasket (figure 9.3). To 
make a Sierpiftski gasket you start with a black triangle. Divide it into 
four equal triangles and colour the one in the middle white; then repeat 
on the three smaller black triangles, and so on forever. The Sierpinski 
gasket belongs to the class of geometrical objects known as fractals. A 
fractal is something that has detailed structure however much it is 
magnified. For example, if the surface of a perfect sphere is magnified, it 
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9.3 The Sierpifrskigasket,a fractal derived from a triangle by repeatedly dividing it into 
four. 

becomes flat and featureless: it is not a fractal. But the shrinking triangles 
of the Sierpiftski gasket go on forever, and the object looks complicated 
however much it is magnified. So the Sierpiftski gasket is a fractal. 

If you draw a black-and-white Pascal's triangle with an enormous 
number of rows, and look at it from a large distance, then it looks just like 
a Sierpiftski gasket. This fact has a curious consequence. 

Among the integers, odd and even numbers occur equally often. A 
number picked at random will be even with probability � , and odd with 
probability � . You might expect the same to be true of the numbers in 
Pascal's triangle: half even, half odd. Now the probability of getting an 
even number in Pascal's triangle is the proportion that is coloured white 
in figure 9.2, and the probability of getting an odd number is the 
proportion coloured black. 

For larger and larger numbers of rows in Pascal's triangle, these two 
probabilities are approximated better and better by the corresponding 
proportions of a Sierpinski gasket. So we may ask: what proportion of a 
Sierpifzski gasket is white? Stop and think about it for a moment before I 
give the game away. 

OK, here goes. Consider how the gasket is constructed. Start with a 
black triangle of total area 1 .  Paint an upside-down triangle, one quarter 
the size, white. This leaves three smaller black triangles, each of area ! , 
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and the remaining black area has shrunk from 1 to ! . Now paint an 
upside-down white triangle on each of these: the black area shrinks 
to � x � . Repeat indefinitely. More and more of the gasket gets painted 
white, and the black area becomes ! x ! x . . .  x ! , which tends to zero as 
the number of stages becomes very large. 

In other words, the black part of a Sierpmski gasket has total area 0, the 
white part has area 1 .  

In terms of  Pascal's triangle, this means that almost all numbers in it are 
even. In a very large Pascal's triangle, odd numbers occur with probability 
very close to zero. So we've learned something surprising about Pascal's 
triangle, by thinking fractally about the Sierpifiski gasket. 

What about generalizations? Odd and even are special cases of 
"arithmetic to a modulus". Let me remind you what that involves. 

Choose a number, for example 5, and call it the modulus. Replace all 
numbers by their remainders on division by 5. Since remainders must be 
less than 5, only the numbers 0, 1,  2, 3, 4 survive. It is still possible to do 
arithmetic in this depleted number system. You can add any two such 
numbers, if you remember again to replace the sum by its remainder after 
dividing by 5. The result is called arithmetic to the modulus 5, or more 
briefly, (mod 5) . In this brand of arithmetic, 2+2 = 4 as usual, but 3+4 = 2. 
That's because 3+4 = 7, and the remainder on dividing 7 by 5 is 2. The 
addition table (mod 5) is: 

+ 

0 
1 
2 
3 
4 

0 1 2 

0 1 2 
1 2 3 
2 3 4 
3 4 0 
4 0 1 

3 4 

3 4 
4 0 
0 1 
1 2 
2 3 

You can use any modulus, not just 5; and in fact you can also do 
multiplication, though we won't need this. 

The distinction between odd and even numbers is just arithmetic 
(mod 2). An even number leaves remainder 0 on division by 2; an odd 
number leaves remainder 1 .  So all even numbers are 0 (mod 2) and all odd 
numbers are 1 (mod 2). 

Thus we can generalize figure 9.2 by asking "What does Pascal's 
triangle look like (mod 5)?", or indeed the same question with "5" 
replaced by any other number. The results, for various moduli, are 
shown in figure 9.4. Here white squares correspond to numbers that are 
0 to the chosen modulus (that is, exact multiples of the modulus), and all 
other values are black. You can generate these pictures yourself, using 
the symbolic rule for forming Pascal's triangle, but carrying out the 
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3 

5 

7 

4 

6 

8 
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1 0  

T 

9.4 Patterns in Pascal's triangle to the moduli 3, 4, 5, 6, 7, 8, 9, 10, 12. The patterns for 
prime moduli (3, 5, 7) tend to be simpler. 

addition using the table for arithmetic to your chosen modulus. Again 
you'll observe striking patterns of triangular regions. 

You may enjoy producing your own patterns. If so, there are many 
ways in which you can explore new territory. You could: 

1 Change the colouring rule. 
For example: what happens if you paint the kth cell in row n black 
whenC(n,k) is 1 (mod S)? Or, more ambitiously, if you use a colouring 
scheme 0 = white, 1 = red, 2 = yellow, 3 = blue, 4 = black? 
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2 Change the modulus. 
What happens (mod 3)? (mod 1 1)? (mod 1001)? 

3 Change the rules. 
Start with different numbers down the sides of the triangle, not just 
1 's. Make each number the difference of the two above, not the sum, 

g

\ / 
g - d  

Or make it t he sum of the number on the left and twice that on the right: 

g

\ I g + 2d . 

You don't need a computer to do any of these. You can easily get thirty 
or forty rows by hand as long as the modulus isn't too big. 

Anyway, that deals with the diagram in Chaitin' s book. But the 
theorem was, if anything, even more intriguing. It lets you predict 
whether a cell will be black or white, without calculating the corres­
ponding binomial coefficient. 

To explain the theorem I need another idea: the representation of 
numbers to a given base. The usual way to write numbers is base 10 (or 
decimal) notation. This means that, for instance, 

32 1 = ( 3 x  lOx  10) + (2 x  lO) + ( l x 1 ) .  

In base 7, say, the same symbol 321 would mean 

(3 X 7 X 7) + (2 X 7) + ( 1 X 1 ) , 

which is 162 in decimal. 
In particular, base 2 notation, or binary, is what computers use. In 

binary the only digits are 0 and 1 .  Here's a short table of binary notation. 

Decimal Binary 

0 0 
1 1 
2 10 
3 11  
4 100 
5 101 
6 110 
7 111 
8 1000 
9 1001 

10 1010 
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Suppose we have two numbers n and k, in binary notation. Write them 
one above the other with corresponding digits aligned. For instance if n 
= 1001 (9 decimal) and k = 101 (5 decimal) then write 

1001 
101 . 

Say that k implies n, written k � n, if every binary digit of the bottom 
number k is less than or equal to the digit of n above it. In other words, 
k � n if you never get a pair of corresponding digits looking like 

0 
1 .  

Write k '""" n otherwise. (The curious use of "implies" comes from 
computer logic operations.) 

For example, to see whether 9 � 5, we look at what I wrote a few lines 
back, and see that the third column from the right has 0 on top, 1 below. 
So 9'"""5. On the other hand 21 � 23 since in binary these are 

101 11 
10001 

and no digit on the bottom is greater than the digit above it. 
The theorem stated by Chaitin - and, as he says, originally proved by 

the great French recreational mathematician Edouard Lucas a century 
ago - is as follows: 

Lucas's theorem 

C(n,k), the kth entry in row n of Pascal's triangle, is: 
even ifk -+ n, 
odd ifk � n. 

It gives a quick and efficient way to test the parity (oddness or 
evenness) of C(n,k). For example, since 21 � 23, it follows that C(23,21) 
must be odd. In fact C(23,21) = 253. To find the parity of, say, C(17,5), we 
express them in binary: 

17 = 10001 
5 = 101 . 

Pad out the bottom number with zeros to make them the same length: 

17 = 10001 
5 = 00101. 
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The third column from the right means that 5� 17, so C(17,5) is even. In 
fact C(17,5) = 24752. 

You can check Lucas's theorem for other cases if you want: I'm not 
going to prove it here. It's a remarkable result, because it relates the 
arithmetic of Pascal's triangle to the modulus 2 and notation to base 2. 
Significant properties of numbers do not usually depend on their digits 
in some notational system - but here they do. 

Does Lucas's theorem generalize to moduli other than 2? Let's try to 
find out. 

The first interesting case is the modulus 3. The pattern of Pascal's 
triangle (mod 3) is shown in figure 9.5. Here the kth cell in row n is 
shown: 

white if C(n,k) = 0 (mod 3), 
black if C(n,k) = 1 (mod 3), 
with a dot if C(n,k) = 2 (mod 3). 

Clearly there's some structure to the problem: the pattern is by no means 
random. But can we predict the entire pattern, rather than just calculate 
bits of it? 

9.5 Pascal 's triangle (mod 3). White = 0 (mod 3), black = 1 (mod 3), dot = 2 (mod 3). 

Lucas's theorem relates C(n,k) (mod 2) to the digits of n and k (base 2). 
It seems natural to try to relate C(n,k) (mod 3) to the digits of n and k (base 
3). Let's experiment. Try row n = 1 1  (decimal), which is 102 in base 3. The 
pattern of values is 



k 0 1 2 3 4 5 6  
C(1 1,k) 1 2 1 0 0 0 0 

7 8 
0 0 
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9 10 1 1  (decimal) 
1 2 1 (mod 3). 

Writing n and k to base 3, and collecting together cases that give the same 
answer, we find: 

C(n,k) = 0 (mod 3): 

n 102 102 102 102 102 102 
k 010 011 012 020 021 022 

C(n,k) = 1 (mod 3): 

n 102 102 102 102 
k 000 002 100 102 

C(n,k) = 2 (mod 3): 

n 102 102 
k 001 101 . 

For convenience I've again padded out k with extra zeros on the left, so 
that every number has the same number of digits. 

Exactly as in binary, let k � n mean " every digit of k is less than or equal 
to the corresponding digit of n"; but this time use digits to base 3. Here 
k � 102 only when k is 000, 001, 002, 100, 101, and 102. Comparing with 
the above results, we find that these are precisely the cases when C(n,k) 
is 1 or 2 (mod 3). In other words, C(n,k) is 0 (mod 3) - that is, a multiple 
of 3 - if and only if k � n, when n and k are written to base 3. 

We haven't proved this; but if you check it experimentally you'll find 
that it always works. It can be considered as generalizing Lucas's 
theorem, because that says that C(n,k) is 0 (mod 2) if and only if k �n 
(base 2). We've just changed "2" to "3" throughout. 

However, if a number isn't even then it must be odd. So Lucas's 
theorem gives complete information (mod 2). Our generalization does 
not give complete information (mod 3), because when k � n the value 
might be 1 or 2 (mod 3). How can we decide which? 

Before reading on, you may like to try your hand unaided. I'll give you 
a clue. Say that a pair of corresponding digits of n and k is crucial if n has 
digit 2 and k has digit 1 .  Take note of the number of crucial pairs. 

Here's my answer: a first attempt at a Grand Lucas Theorem. It looks 
very strange! 
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Lucas's theorem (mod 3). 

C(n,k) (mod 3) is: 
O if k +  n. 
1 if k � n and the number of crucial pairs of digits is even. 
2 if k � n and the number of crucial pairs of digits is odd. 

For example, if you want to know C(62,30) (mod 3) you just write 

n = 62 decimal = 2022 base 3 
k = 30 decimal = 1010 base 3. 

i t  
First, k � n so the result is 1 or 2. There are two crucial pairs, marked by 
arrows. Since two is even, we know that C(62,30) must be 1 (mod 3) .  

This is striking. C(62,30) is a number with eighteen digits, and I don't 
know what it is exactly. But I do know what it is (mod 3)! 

For a more accessible check on the theorem, let's try C(14, 1 0). We have 

n = 14 decimal = 112 base 3 
k = 10  decimal = 101 base 3. 

i 
Again k � n, but there is only one crucial pair. Since one is odd, C(14, 1 0) 
must be 2 (mod 3). InfactC(14,10) = 1001 = 999+2 = 3X333 + 2, so I'm right. 

So at least we've got an answer for modulus 3, but it's all rather 
baffling. Why does it depend on crucial pairs? Mathematics is about 
understanding, not just answers: what's really going on? 

When I started thinking about other moduli, I couldn't see how to 
make anything like crucial pairs work. I got stuck. This is not uncommon 
in mathematical research. One trick of the trade is to pick other people's 
brains. So I mentioned the (mod 3) result to a colleague, John Jones. He's 
a topologist, so I thought it was a fair bet that he hadn't come across this 
theorem in combinatorial number theory. But mathematics is full of 
surprises. 

"Oh, yes," he said. "That sort of thing's very important in topology. 
The answer for any prime modulus is given in Cohomology Operations by 
Epstein and Steenrod." He was right. (David Epstein's office is just down 
the corridor from mine. Isn't life full of strange coincidences? Read on, 
there's more.) The next day Mike Paterson, from the Computer Science 
Department, told me that the result is in volume I of Donald Knuth's 
monumental classic The Art of Computer Programming. Two days later, 
volume 10 number 2 of the Mathematical Intelligencer magazine arrived ­
and there on p. 56 was a long article by Marta Sved, with much the same 
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pictures as I've drawn here, the general theorem for any modulus, and 
information on related questions such as Stirling numbers. 

All this drives home to me the unity and diversity of mathematics, the 
problems of the information explosion, and the inescapable perversity of 
the universe. 

Be that as it may, let me tell you what the genuine Grand Lucas 
Theorem is. It tells you how to compute C(n,k) to any prime modulus p. 
And the whole idea is far, far neater than crucial pairs, which suddenly 
look chewing-gum-and-stringy compared to the deeper pattern. 

I'll describe the theorem by example. Suppose you want to find C(216, 
159) (mod 7). First, write 216 and 159 to base 7. That is, express them as 
a x  49 + b x 7 + c and write them in the notation abc. The result is that 216 
(base 10) is equal to 426 (base 7), and 159 (base 10) is equal to 315 (base 7). 
Write these one underneath the other, 

426 
315 

and form the three binomial coefficients given by the columns: C(4,3), 
C(2,1), and C(6,5). Work these out, 

C(4,3) = 4 
C(2,1)  = 2 
C(6,5) = 6 

and multiply the results to get 4 x 2 x 6 = 48. Finally reduce this (mod 7) 
to get 6. This is the answer. 

It works for any prime modulus. If you get "impossible" binomial 
coefficients C(n,k) where n is smaller thank, you must treat them as being 
zero. 

How does this fit with the now discredited idea of crucial pairs, which 
solved the problem (mod 3)? Theansweris that any crucial pair contributes 
a factor of 2 to the value we want, whereas non-crucial pairs always 
contribute a factor 1 .  (When k � n no zero factors occur.) Now 2 x 2 = 1 
(mod 3). Pairs of 2' s "cancel out". So the product of all the factors is 1 if 
there is an even number of 2's, and 2 otherwise. Crucial pairs are red 
herrings! 

And what that shows is: don't always be satisfied with the first pattern 
you find. There may be a deeper and better explanation. 

Here are some questions for you to think about. 

1. Choose any modulus m. For numbers k and n written in base m 
notation, define k � n if every digit of k is less than or equal to the 
corresponding digit of n. One possible generalization of Lucas's 
theorem (mod 2) is: C(n,k) is 0 (mod m) if and only if k '"""'n. Is this true? 
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2. If not, for which n is it true? 
3. How can you determine C(n,k) (mod 4)? 
4. How can you determine C(n,k) (mod 5)? 
5. How can you determine C(n,k) (mod 6)? 

ANSWERS 

1 No. For instance, in base 4 we have 2 � 4 because 2 is 02 and 4 is 10  
in base 4; but C(4,2) = 6 which is 2 (mod 4), not 0. 

2 The Grand Lucas Theorem shows that the answer includes all 
prime moduli. 2 

3 Because 4 = 2, this comes under the general heading of prime 
power moduli. The results in this case are equally satisfying but much 
more complicated, and I refer you to Marta Sved's article, listed below. 

4 This is a direct consequence of the Grand Lucas Theorem, because 
5 is prime. 

5 This can be answered by breaking it into two parts. You can always 
work out what a number is (mod 6) provided you know it (mod 2) and 
(mod 3). Here's a table that shows how: 

mod 2 mod 3 mod 6 

0 0 0 
0 1 4 
0 2 2 
1 0 3 
1 1 1 
1 2 5 

For instance, a number is 5 (mod 6) if and only if it is 1 (mod 2) and 2 
(mod 3). So we can find C(n,k) (mod 6) by combining its values (mod 2) 
and (mod 3). By the Grand Lucas Theorem, these can be found by writing 
n and k to base 2 and then to base 3. 

So now two different number bases have come into the picture! I'd be 
surprised if you can answer question 5 using only the expansions of n and 
k to base 6 - let me know if you manage it. 

FURTHER READING 

Gregory J. Chaitin, Algorithmic Information Theory (Cambridge: Cambridge 
University Press, 1987) 

Martin Gardner, Mathematical Carnival (Harmondsworth: Penguin, 1978) 
Benoit Mandelbrot, The Fractal Geometry ofNature(San Francisco: Freeman, 1982) 
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Alfred Renyi. A Diary in Information Theory (Cambridge: Cambridge University 
Press, 1987) 

Ian Stewart, Concepts of Modern Mathematics (Harmondsworth: Penguin, 1981) 
Marta Sved, "Divisibility - with Visibility", Mathematical Intelligencer, 10/2 

(spring 1988), pp. 56-64 
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The Worm Returns 

Henry Worm was coiled up in his favourite armchair by the fireside, 
reading the financial pages of the newspaper. "Wood worm's shares are 
down a point today, Anne-Lida . . .  Maggots and Spencer are doing 
better, though, and Slime Darby Holediggings are really going great . . .  " 

"Henry, you know very well that we don't own any shares! Now put 
that paper down, and apply your mind to something important." 

"Yes, dear," said Henry, thinking that the early hen pecks the worm as he 
folded the newspaper sadly. ''What important question did you have in 
mind?" 
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"The question of my sister Worma's birthday-present," said Anne-
Lida. 

"Ah. Yes. How about a pair of socks?" 
"What would a worm want a pair of socks for?" 
"A sock, then. A knitted bedsock." 
"We gave her a bedsock last year, Henry." 
"The left or the right?" 
"The left." 
"Then this year we can give her the right sock." 
"Henry, we gave her the right sock two years ago. No, I want to send 

her something more thoughtful, something we have taken more trouble 
over." 

"Something I have taken more trouble over," muttered Henry. 
"Nothing, dear. Don't worry, leave it to me. I'll think of something really 
unusual!" 

"That's what worries me," said Anne-Lida. 
A week later, Henry staggered into the hole carrying a huge parcel. 

Gift-wrapped. 
"What under the earth is that?" 
"Worma's present, my sweet." 
Anne-Lida peered at the object disdainfully. "Well, at least you got 

something big, whateverit is," she said. "Not like the earrings you bought 
in 1962, with the broken clasps." 

"I didn't think the clasps would matter. After all, worms don't have 
ears. You must admit they fitted her beautifully!" 

"Yes. Like a pair oflifebelts. But let us not argue, Henry. What did you 
buy?" 

Proudly Henry unwrapped the present. 
Anne-Lida's tail drooped. "Pizza?" 
"The biggest pizza in the world, my pet. Fit for a queen!" 
"The crust seems rather thin." 
"Thinnest in the world. Thinner than paper. Exquisite when baked!" 
"Hmmph. But Henry, it must be a metre across, at the very least." 
"Exactly a metre, Anne-Lida." 
Anne-Lida sniffed. "Well, don't blame me if you have trouble posting 

it." 
"Sending pizza through the post," said Henry, "is no problem . . .  " 

"That will be £5," said Hector the postworm. He paused, and eyed the 
parcel warily. "Unless . . .  H' excuse me, sir, but how big is that parcel?" 

"One metre in width." 
"What do you mean, width?" 
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"The maximum distance in a straight line between any two of its 
points." 

"Oh dear." 
"What do you mean, 'Oh dear'?" 
"I think you h' are referrin' to what we in the Post Office technically call 

the diameter (figure 10.1) .  Now I am h' obliged to inform you, sir, that if 
the diameter was less than 1 metre, there would be no problem. 
H'unfortunately the postal rules state that parcels will be accepted only 
if their diameter is less than 1 metre." He took out a gigantic pair of 
callipers and measured the parcel carefully. "Yes, just as I feared. One 
metre precisely. Not less, sir: equal. I'm afraid I'm not permitted to 
h' accept it." 

10.1 The diameter of a plane figure (or one in higher dimensions) is the largest distance 
in a straight line between any two of its points. 

"Look, let's be reasonable," said Henry. "I can always shave a little bit 
off." 

"Yes, sir, but that may not reduce the maximum width. For h' instance, 
sir: suppose the pizza was a perfect circle, 1 metre in diameter. Then 
shaving a little bit off would make it less than a metre across in one 
direction - but in others it would still be a metre across." (Figure 10.2) 

"I don't think it's exactly circular," said Henry. "It looks a bit irregular 
to me." 

"Same principle," said Hector airily. "Of course, you could always cut 
it up and send it in pieces." 

''Yugh," said Henry. "Sorry. Talk of cutting things up always makes 
me feel queasy. My mother had a near miss with a lawnmower and I was 
nearlybomastwins . . .  Butyou'reright,I could-ugh-slice itinhalf . . .  " 

"That might not work, sir. lf you slice a metre circle in half then at least 
one piece will still have diameter 1 metre." (Figure 10.3) 

"Well, quarters then. That would do it (figure 10.4). I don't know 
offhand what the diameter is, but it's surely less than 1 metre." 

"Excellent. That will be £20, sir." 
"What!?" screeched Henry Worm in dismay. 
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10.2 Cutting off a small piece of a circle does not decrease its diameter. 

10.3 If a unit circle is cut into two pieces, at least one piece contains two diametrically 
opposite points and hence has diameter 1 .  
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I 
10.4 A circleofunitdiametercut infouryields pieces with diameter �� = 0.7071 . . . , 
smaller than 1 . . .  

"Flat rate, sir: £5 per package." 
"l'mnotspending£20tosendmysister-in-lawapizza! Itonlycost£3!" 
"Then you'll have to cut it into fewer pieces. If I were you, I'd cut it up 

into the smallest number possible." 
"Good idea!" said Henry. The first helpful thing the idiot's said. "What 

number would that be?" 
The postworm stared at the ceiling. "Three, for a circular pizza, sir 

(figure 10.5). But in general I haven't the foggiest h'idea. Depends what 
shape it is, you see." 

"Don't worry about the shape. What's the smallest number that will 
work for any shape? I can see how to do it in four pieces, but maybe that's 
too big. On the other hand, your circle example shows that two pieces 
aren't enough . . .  So the smallest number has to be either three or four." 

"I still haven't the foggiest h'idea," said the postworm. 
"Neither have I," said Henry. "But, unlike you, I have an enquiring 

and intelligent mind. I shall find out . . .  " 

HenryWormsatcoiledinhisfavouritechair,makingirritatedannotations 
on a piece of paper. 
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1().5 . . .  but a circle of unit diameter cut in three yields pieces with diameter 
,_3 = 0.8660 . . .  , which is also smaller than 1 .  
2 

"Henry dear, what under the earth are you scribbling for?" 
"Er - it's a mathematical problem, my dear." 
"Oh." 
"Given a shape in the plane, of unit diameter, you must cut it up into 

several pieces, each of diameter less than 1 unit." 
"Dice it, Henry." 
"Yes dear, that would work, but it would cost a fortune in postage!" 
"Henry, what are you . . .  " 
"I want to find the smallest number of pieces that will always work, no 

matter what the shape may be. That, my dear, is what I was 'scribbling' 
about. A question of the highest intellectual depth." 

"Henry, you're talking nonsense." 
"Yes, dear. The answer is either three or four." 
"How under the earth can you tell that, Henry? You said yourself you 

don't know what the shape is!" 
"Ah, but I can prove that every figure of diameter 1 metre is contained 

inside a square of side 1 metre. To see why, fit the shape into a right­
angled comer (figure 10.6(a)) as tightly as possible. Then it can't project 
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1 unit 

I 
- - - - - - - - - - - - +-

(a) (b) (c) 

10.6 (a) Any shape fits snugly into a right-angled corner. (b) If it has diameter 1 then 
it cannot cross two lines parallel to the walls, one unit distant. Therefo�e it lies inside a 
unit square. (c) Suchasquarecan becut intofourpieces,eachofdiameter �2 = 0 .7071 . . . ;  
hence so can the original shape. 2 

overtwolinesdrawn parallel to the walls, but 1 metreaway(figure 10.6(b)). 
Because, if it did, it would have diameter more than 1 metre.'' 

"Agreed. That's obvious, Henry." 
"When ideas of genius are pointed out with sufficient clarity, even the 

feeblest wit can comprehend them,'' said Henry. 
"That's as may be. But your genius-level brain hasn't yet explained 

with sufficient clarity why you wish to surround the shape with a 
square.'' 

"Ah . . .  Well, if I cut the metre squ.are into four parts, then the shape 
is also cut into four parts (figure 10.6(c)). Each has diameter at most 
�2 = 0.707 1 . . .  metres, which is less than 1 .  Because that's the length 
of the diagonal of the smaller squares.'' 

"You know, Henry, there are times when you're almost as clever as 
you think you are . . .  Can you cut a square of side 1 metre into three pieces 
of smaller diameter than 1 ?'' 

"I don't think so,'' said Henry. (He's right. Can you prove it?) 
"Perhaps you could replace the square by something smaller, which 

would cut into three pieces of diameter less than 1 metre. Something that 
doesn't stick out so much at the corners." 
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Which, Henry Worm was forced to admit, wasn't a bad idea at all . . .  
But what shape should he use? He returned to his pad and began 
doodling. Soon an idea began to crystallize. 

"Anne-Lida, I do believe a regular hexagon will work! Look, suppose 
I can surround the shape with a hexagon whose sides are 1 metre apart 
(figure 10.7(a)). Then I can cut it into three parts whose diameters are less 
than 1 metre (figure 10.7(b))." (What is thediameterofthe threepieces?) "I'm 
not sure if such a hexagon exists in general, but . .  .'' (tries it) " . . .  it 
certainly does for Worma's pizza, look!" 

(a) (b) 

1 unit 

10.7 (a) Surround a shape of unit diameter by a regular hexagon whose opposite sides 
are 1 unit apart. (b) Cut into three pieces, each of diameter less than 1 .  

"You should post Worma's present now, Henry. Even if the general 
proof is lacking.'' 

"Certainly, my dear." 
"And Henry?" 
"Yes, my little caterpillar?'' 
"Don't forget that it's mother's birthday next week. Try to think of 

something we can send her.'' 
"A handkerchief?'' 
"Don't be silly, Henry. Worms have no noses." 
I was thinking more of using it as a gag, thought Henry . . .  
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Two days later Henry staggered into the hole with a large gift-wrapped 
parcel. 

"What under the earth is that?" 
"Your mother's present, my sweet." 
Anne-Lida peered at the object disdainfully. "Well, at least you got 

something big, whatever it is," she said. ''What is it, by the way?" 
Proudly Henry unwrapped the present. 
Anne-Lida's tail drooped. "Cheese?" 
''The biggest cheese in the world, my sweet." 
"Henry, it must be a metre across, at the very least.'' 
"Oh, surely not, Anne-Lida.'' 
Anne-Lida sniffed. "Well, don't blame me if you have trouble posting 

it." 
"Sending cheese through the post," said Henry, "is no problem . . .  " 

"That will be £5," said Hector the postworm. He paused, and eyed the 
parcel warily. "Unless . . .  H' excuse me, sir, but how big is that parcel?" 

"What do you mean, 'big'?'' 
"Its diameter, sir. The largest distance in a straight line between any 

two of its points, just the same as for two dimensions. Sir." 
"Just under a metre,'' said Henry cheerfully. 
"Let me just measure it, sir . . .  Hmmm . . .  I make it exactly 1 metre." 
"Oh.'' 
"Which poses what we in the Post Office call a bit of a problem, sir.'' 
"Don't tell me. All right, cut it into three bits, then!'' 
Hector the postworm picked the parcel up and eyed it from several 

directions. "I'm not sure three pieces will do it, sir." 
"But I've just proved that three . . .  " 
"Yes, sir. For plane figures, sir.'' 
"Oh." 
"This here package is what we in the Post Office refer to h'as a bulky 

item, sir. A three-dimensional parcel, if you catch my meaning." 
"I'm beginning to see the problem, yes.'' 
"Now, were this a spherical cheese, like a Gouda, shall we say, then 

you couldn't possibly comply with Post Office regulations by cutting it 
into three pieces." (Why not?) "On the other hand, four would certainly 
be enough." (Figure 10.8) 

"Fine, quarter it, then." 
"You haven't looked very closely at the figure, sir. Cutting it into 

quarters doesn't work." 
"Well, eighths, then. That will do the trick! Every solid of diameter one 

metre fits inside a unit cube - the proof is much the same as for two 
dimensions-so if we cut that into eight equal cubes half the size, then the 
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10.8 How to cut a sphere of unit diameter into four pieces of diameter less than 1 .  

small cubes will have diameter less than 1 . . .  " (What is their diameter?) 
" . . .  and so will the pieces of the original solid." 

"Excellent, sir. That will be £40." 
"What? But the cheese only cost £7! Look, I'll take it away and 

experiment a bit first . . .  " 

But the intricacies of three-dimensional geometry were too much for 
Henry. So he went to see a friend of his, an obscure clerk at the Patent 
Office named Albert Wormstein who seemed to have a bit of a 
mathematical mind. He found him standing in front of a blackboard, 
writing formulas on it and then rubbing them off again in irritation. 
"E = rna 2 • • •  No, ridiculous! E = mb2 • • •  ? Better, but not right, not right at 
all. E = m . . .  " 

"Hello, Albert! Sorry, am I interrupting anything important?" 
"Good heavens no, Henry. Just a little idea that won't quite work 

out . . .  Nice to see you again." And Henry explained his problem. 
"Borsuk!" said Albert. 
"Same to you!" replied Henry, with some heat. So Albert had to 

explain that he'd meant no offence. Henry's problem was a question in 
combinatorial geometry: the arrangement of shapes. It was first posed by 
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the Polish mathematician K. Borsuk in 1933, and is therefore known as 
the Borsuk Problem. It had been solved, Albert told him, for two- and 
three-dimensional bodies, but is still open for bodies of dimension four 
or more. 

The Borsuk Problem asks for the smallest number of pieces such that 
any set of unit diameter inn-dimensional space can be cut into that many 
sets of strictly smaller diameter. In 1933 Borsuk proved that for figures in 
the plane, three pieces are always sufficient. His proof was the same as 
Henry's. Henry's conjecture, that every plane set of diameter 1 can be 
surrounded by a regular hexagon whose opposite sides are distance 1 
apart, was proved by the Hungarian mathematician J. Pal in 1920. As 
Henry had realized, the solution to Borsuk's Problem in the plane then 
follows. For sets in the plane the answer to the Borsuk Problem is that 
three pieces are always enough. 

Is the same true for sets in three-dimensional space? Borsuk made the 
same observation as Hector the postworm: the answer is "no" . A sphere 
of diameter 1 cannot be divided into three pieces of diameter less than 1 .  
In 1933 he conjectured that four pieces suffice for any set in three­
dimensional space, and more generally that n+ 1 pieces suffice in n­
dimensional space. But he couldn't prove his conjectures. 

The first progress was made in 1955 by H. G. Eggleston, who proved 
that Borsuk was right in three dimensions. His proof, very long and 
difficult, was simplified in 1957 by Branko Griinbaum, using a similar 
trick to the Pal hexagon. In 1953 David Gale had proved a three­
dimensional analogue of Pal's Theorem: every solid of diameter 1 can be 
surrounded by an octahedron in which opposite faces are distance 1 
apart. Instead of a Pal hexagon, Griinbaum used a Gale octahedron. He 
showed that if three comers of the octahedron are cut off as in figure 10.9, 
then it can still contain any body of diameter 1 .  Finally he found a way to 
cut the resulting polyhedron into four pieces, each of diameter less than 
1 (figure 10.10). The enclosed solid mustalso split up into four (or fewer) 
pieces, each of diameter less than 1 .  

"And what is the diameter?" 
"The widest piece has diameter 

}(61 29030-93741 9 }3) 
( 1 5 1 8 )2) 

which is about 0.9887." 
"Tricky," said Henry, impressed. 
"Yes, combinatorial geometry is deceptive. There are lots of problems 

that look easy, but are still wide open. In a space of dimension four or 
higher, the Borsuk Problem still remains unsolved." 

"Really?" 
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10.9 Every solid of unit diameter can be surrounded by a Griinbaum polyhedron, 
obtained by slicing pieces off a Gale octahedron (one whose opposite faces are 1 unit 
apart). 

4 
2 

10.10 The Griinbaum polyhedron can be cut into four pieces, each of diameter less 
than 1 .  
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"Indeed. It's known that at least n+ 1 pieces are required in general, but 
it's not known whether more than n+l might be needed to cut some 
carefully chosen set of diameter 1 into pieces of smaller diameter. It is 
known that such a set must have sharp corners: in 1946 H. Hadwiger 
proved Borsuk's Conjecture for convex sets with smooth boundaries." 

"So even in four dimensions, Borsuk's Conjecture is unproved? Let me 
see, that would say that any set in 4-space of diameter 1 can be cut into 
five pieces, each of diameter less than 1 .  Hmm . . .  Almost sounds worth 
having a go at that! I bet I could get fairly close . . .  " 

"Possibly," said Albert. 
"Can't you try the same argument I used with the square and the cube? 

Surround the shape by a unit hypercube and cut that into sixteen pieces 
half the size?" 

"No, Henry, that method doesn't work any more. It's not easy, 
thinking in four-dimensional space." (Why doesn't the method work? Use 
the fact that the "hyperdiagonal" of a four-dimensional "hypercuboid" of sides 
a,b,c, d isgiven by...J(a 2 + b2 + c2 + d2 ),generalizingthe Pythagorean theorem.) 
"By cutting a unit hypercube into thirds you can show that eighty-one 
pieces are enough. But that's much too big." 

"Are there any general results that work for all dimensions?" asked 
Henry. 

"Indeed," said Albert Wormstein, nodding vigorously. "L. Danzer 
proved that in n dimensions 

(n - I )  ) <n�2)3 .(2 + )2) 2 .  

pieces are required. That comes to fifty-five when n = 4. But I'm sure you 
can do better than that in the four-dimensional case." (Can you?) 

"Let me think about it . . .  Anyway, Albert, thank you for your help." 
"It was nothing. Now, where was I?" 
"Er . . .  E = md; I think." 
"Thanks. Well, anyone can see that's no good! So next comes E = me 

2 • • •  
Nq, no, terrible, terrible. You know, just before you arrived I really 
thought I was getting close, but now it feels as if I'm missing something 
important . . .  " 

ANSWERS 

1 .  You can't cut a unit square into three pieces of diameter less than 
1, because at least two of the four corners must belong to the same piece, 
and those are 1 or more units apart. , 

2. The three pieces of the hexagon have diameter �3 = 0.8660 . . . . 
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3. If you cut a sphere into three pieces then at least one of them must 
contain two diametrically opposite points. The proof of this is quite long, 
but requires no technical knowledge. See V. Boltjansky and I. Gohberg, 
Results and Problems in Combinatorial Geometry, p. 10. 
h 4. Each half-sized cube has diameten 1((  4 )2 + d)2 + d)2) = ...J d> = 
T = 0.8660 . . . . 

5. Henry's cube-halving method fails in four dimensions, because 
the diagonal of a half-size hypercube is ...J ( ( !)2 + ( !)2 + ( !)2 + ( !)2 ) = 1 .  

6.  Cut the hypercube in half in three directions but into three equal 
parts along the fourth. This yields twenty-four smaller hypercuboids, each 
of diameter ..J((!)2 + (!)2 + (!)2 + (�)2 ) =..J ( �) = 0.9279 . . . . But perhaps 
you can improve on that? 

FURTHER READING 

V. Boltjansky and I. Gohberg, Results and Problems in Combinatorial Geometry 
(Cambridge: Cambridge University Press, 1985) 

K. Borsuk, "Drei 5atze iiber die n-dimensionale Sphlire" ,Fundamenta mathematicae, 
20 (1933), pp. 177-90 

H. G. Eggleston, Convexity (Cambridge: Cambridge University Press, 1955) 
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All Parallels Lead to Rome 

The city that invented apartment blocks has an insoluble housing 
shortage. 

The city that invented the public sewer has no adequate sewerage 
system. 

The city which in 45 BC banned wagons from its centre during daylight 
hours has an average traffic speed of 6 km/hr. There are three cars for 
every metre of road. 
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The city is noisy, filthy, and heavily in debt - and one of the most 
beautiful in the world. A living paradox. No wonder that a one-sided 
surface is named after it. 

No, there's no city named "Mobius" . This is Rome. And when in 
Rome . . . 

We sat at a table in the Via Vittorio Veneto, which winds downhill 
from the gardens of the Villa Borghese until it runs into the Piazza 
Barberini. An empty chianti bottle lay among the remains of a pasta 
lunch. A second, half full, stood beside it. 

"Good job chianti doesn't come in Klein bottles," I said. 
"I know that klein is German for ' small'," said Enrico, "and I agree that 

it's a good job chianti doesn't come in small bottles -but why have you 
lapsed into German all of a . . .  ?" 

"No," I said. "I didn't mean that. It was a mathematician's joke. A 
Klein bottle is one whose inside and outside are the same." 

"It would save on corks," said Elena. 
"No, it would always leak," said Enrico. Enrico and Elena Macaroni: 

Henry and Helen. But it sounds so much more elegant in Italian. He runs 
an art gallery, and she runs him. 

"How can a bottle have its inside the same as its outside?" Elena asked, 
serious now. 

"It's a complicated story," I said. "Thetruthis thatitdoesn't really have 
an inside or an outside . . .  And it isn't really a bottle." 

"That explains a great deal." 
"Who was Klein?" asked Enrico. 
"Felix Klein was one of the greatest mathematicians that Germany 

ever produced," I said. "He was the second person to invent a surface 
with only one side. The first was August Mobius." I took a paper napkin, 
tore off a narrow strip, and joined its ends with a half-twist. "See: a 
Mobius band (figure11 .1 ). But the Mobius band has an edge. Klein's 
bottle, invented in 1882, has no edges, it's a closed surface." (Figure 
1 1 .2(a)) 

"And it has only one side?" 
"Imagine trying to paint the surface. You start on what looks like the 

outside, and carry on painting the tube. But it bends round, passes 
through itself, and then kind of turns inside-out. At that point you find 
that you're painting what you originally thought was the inside. There's 
only one side to the surface: it all joins up." 

"But that's because it passes through itself," said Elena. 
"No, it's because it turns inside-out and then joins up. I admit that it 

has to pass through itself if you want to make a model in three­
dimensional space. In four-dimensional space it doesn't cross itself, but it 



11 .1 The Mobius band. 

(a) (b) 
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(c) 

1 1 .2 Three views of the Klein bottle. (a) Embedded in 3-space. (b) Embedded in 4-
space, the fourth dimension being illustrated by the depth of shading. The self-intersection 
in 3-space does not occur in 4-space (despite the way the picture looks when projected into 
3-space as here): the positions in the fourth dimension of the two sheets of surface (that 
is, their shades) are different at the apparent intersection. (c) A less familiar form of the 
Klein bottle obtained by joining a figure 8 to itself with a half-twist. The shades 
distinguish the two lobes of the figure 8. 
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still has only one side. Of course you have to learn how to think in four 
dimensions to see that." (Figure 1 1 .2(b)) 

"Oh." 
"Another way to obtain a Klein bottle is to take a figure 8, move it 

round a circle, and give it a half-twist as you do so (figure 1 1 .2(c) ). Butthat 
doesn't look very bottle-shaped. Actually," I went on, " I have a private 
theory about the name Klein bottle. I think it was originally Klein's surface. 
You see, in Klein's day there was quite an industry involving German 
mathematicians inventing new surfaces and getting them named after 
themselves. Kummer's surface and Steiner's surface, for instance, 
originally Kummersche Flache and Steinersche Flache, the '-sche' being a 
possessive ending and 'Flache' being German for 'surface'. So it probably 
started out as Kleinsche Flache, 'Klein's surface' . But it looks like a bottle, 
and the German for bottle is Flasche, so . . .  " 

"Some graduate student called it the Kleinsche Flasche!" said Elena. 
"'Klein's bottle' ! A German pun!" 

"Exactly. Or maybe it was mistranslated. I do know that in Hilbert and 
Cohn-Vossen's famous book Anschauliche Geometrie they refer to 'Klein's 
surface, also known as the Klein bottle' . Maybe Hilbert invented the 
pun." 

"Fascinating," said Enrico. "Not very relevant to the real world, 
though." 

"Don't be so sure," I said. "You're an art-dealer, right?" 
"You know that." 
"Italy is famous for beautiful paintings. Masaccio, Canaletto, Gozzoli, 

Veneziano, della Francesca. Wonderful perspective, right?" 
"Perspective was invented in Italy." 
"Perspective drawing was invented in Italy. The basic idea was 

discovered by Brunelleschi,inabout 1420. And the geometry of perspective 
was published by another Italian, Alberti, in 1436, in his book Della 
pittura. It's called projective geometry, and it describes the way in which the 
eye sees the world. The basic surface is known as the projective plane. In 
the projective plane there are no parallel lines: any two lines meet at a 
single point." (Figure 1 1 .3) 

"Crazy." 
"Furthermore, as Klein showed in 1874, the projective plane has only 

one side." 
"Not so good for painting, then," said Enrico. 
"No, you're wrong: you can get twice the size of painting on the same 

size of canvas!" Elena pointed out. 
Curiously, the projective plane was invented long before the Klein 

bottle; but it's virtually unknown outside mathematical circles, whereas 
the Klein bottle is famous. Below, we'll examine some of the possible 
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11 .3 The Annunciation of Domenico Veneziano (fl. 1438-61). The edges of the walls, 
in reality parallel, appear to the eye to meet "at infinity". 

reasons for this; but first we need to become familiar with the projective 
plane. 

In ordinary geometry, there is a unique line joining any two distinct 
points. Most pairs of lines intersect in a unique point, but some -parallel 
lines - do not. But, from the right viewpoint . . .  

I led Enrico and Elena from the Via Vittorio Veneto to the nearby Via 
XX Settembre, part of a long, straight stretch running for almost 4 km 
from the middle of Rome towards the suburbs. 

"What do you see?" I asked them. 
"Traffic. Jammed solid, as usual." 
"No, I mean, something geometric." 
"Nothing special." 
"The two edges oft he road, they're a pair of parallellines. Parallel lines 

don't meet. Look at them: do they look as if they don't meet?" 
Enrico and Elena humoured me by staring down the long, straight 

road. 
"They do seem to meet," said Elena. 
"On the horizon," said Enrico. 
"Precisely," I said. "When the eye looks at parallel lines, they appear 

to meet. In the geometry of the visual system, parallel lines do not exist. 
So we need a new kind of geometry, in which any two lines meet. 
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"How far away is the point on the horizon where the two sides of the 
road would meet - if they were extended far enough?" 

"Ooh, about 50 kilometres," said Elena. 
"On a spherical Earth, yes. But on a plane?" 
"Well . . .  At the edge." 
"It's a long way to the edge of a plane," said Enrico. 
"Infinitely long," I said. "The place where parallel lines appear to meet 

is at infinity. In the usual Euclidean plane, infinity doesn't exist. You can 
go as far as you like, but you can't actually get to infinity. But in projective 
geometry, you can. To achieve this you have to add extra 'ideal' points 
'at infinity' to the plane (figure 1 1 .4). The points 'at infinity' form an extra 
line, so you have to add that too. What you get then is a slightly larger 
plane, so to speak, in which any two points are joined by a unique line and 
any two lines meet in a unique point." 

(a) (b) (c) 

11 .4 The Euclidean plane (a) plus a line at infinity (b) forms the projective plane, 
provided we agree (c) that opposite pairs of points on the boundary such as AA or BB 
represent the same point of the projective plane. 

"But parallel lines meet in two points," said Elena. "One at one end, 
one at the other." 

"Mmmm," I said. "But it would be nice if they met in only one, right? 
Prettier. More symmetric and elegant. More like actual lines." 

"Yes," she said doubtfully. 
"So we have to pretend that the two points at opposite ends of a pair 

of parallel lines are the same," I said. 
"That's silly." 
"Not as silly as it sounds. Have you ever been to infinity to see for 

yourself?" 



"No." 
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"Mathematically, infinity is just an abstract construct, so we can 
endow it with any properties we want. I happen to want lines to meet in 
only one point. So I insist that the 'two' points at infinity, at either end of 
a pair of parallels, are to be considered as the same. It may sound odd, but 
it works. It's sort of like bending the lines round into a circle-except that 
they stay straight." 

"Clear as mud." 
"Good. So we get our first model of the projective plane: it's the usual 

plane, plus a 'line' at infinity, plus the rule that the opposite ends of pairs 
of parallels meet the 'line' at infinity in the same point." (Figure 1 1 .5) 

In projective geometry, 

looking south looking north 

11 .5 Looking south along a straight railway line we see two parallels meeting at 
infinity. Looking north, we see them meet again. Because two lines should meet in a 
unique point, we must identify these two "opposite" points at infinity. 

"I'm having trouble visualizing it." 
"On the contrary, Elena, it's how your visual system actually works." 
"Well, I'm having trouble getting it into my head in one piece. And it's 

not at all clear to me why the projective plane has only one side, as you 
say. The ordinary plane has two sides: top and bottom." 

"Yes, but the top surface and the bottom surface get joined together at 
infinity because of the rule about the end-points of parallels being the 
same," I said. 

There are several different ways to "see" the shape of the projective 
plane, and some of them make it clearer than others that it has only one 
side. Probably the simplest is to take a topologist's viewpoint. As far as 
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a topologist is concerned, the whole infinite plane can be squashed up 
inside a circular disc (figure 1 1 .4(a)) - minus its boundary, of course. 
Then the extra "points at infinity" can be added in by gluing on the 
boundary as well (figure 1 1 .4(b)). It looks circular, but that's not a 
problem to a topologist. To accommodate the rule about the opposite 
ends being the same, we have to (mentally) "glue" opposite points of the 
boundary circle together (figure 1 1 .4(c)). If you try to bend the disc in 
three-dimensional space, so that this happens, then you have to pass it 
through itself (figure 1 1 .6). The top half of the picture is called a cross-cap. 

11 .6  If we attempt to identify opposite points in Figure 11 .4( c) by physically bending 
the plane it is necessary for the resulting surface to pass through itself, forming a cross­
cap. Along the self-intersection, the two "sides" of the plane join together to create a 
single-sided surface. The point at the top is singular: the surface near it cannot be 
continuously deformed into one or more separate discs. 

The cross-cap cuts through itself along a line. Just as for the Klein 
bottle, this line of self-intersection is an artefact caused by the way we 
draw the surface in three-dimensional space. Mathematically, it isn't 
"really" there. But it helps us to visualize it. To get rid of it, we should 
think of a disc, whose opposite boundary points are identified mentally, 
rather than by actually bending the disc around to bring them together. 

You can see that this version of the projective plane only has one side. 
If you start painting the "outside" and cross the line of self-intersection, 
you end up on the "inside" . You can see it in another way. If we cut out 
a strip that crosses the disc (figure 1 1 .7(a)) then we really can glue the ends 
together - and we get a Mobius band (figure 1 1 .7(b)). So the inside and 
outside already join up in this part of the projective plane. In fact we can 



(a) (b) 

All Parallels Lead to Rome 163 

(c) 

11 .7 A strip (shaded) that runs across the projective plane (a) forms a Mobius band 
(b) because opposite points on the boundary are identified. Suitably deformed, the 
remaining two pieces join to form a disc (c). Abstractly, we can form a projective plane 
by sewing a Mobius band and a disc together along their edges. 

see that a projective plane is just a Mobius band with a disc sewn on along 
the edge (figure 1 1 .7(c)). 

"It's all a bit unnatural," said Enrico. 
"I agree," I told him. "Your sense of artistic elegance is functioning 

very well. But there's another model for the projective plane that is both 
geometric and natural. Of course, it has its own peculiarities." 

"Of course." 
''The idea is to increase the dimension of everything by one. When I 

say 'point' you must think 'line through the origin' . In ordinary three­
dimensional space. When I say 'line' you must think 'plane through the 
origin' . When I say 'two points lie on a line' you must think 'two lines lie 
on a plane' . OK?" 

"If it keeps you amused." 
'Well, the abstract essence of geometry is the way that 'lines' and 

'points' relate to each other, it's not their actual shape. The names are just 
useful labels. Here, it's useful to modify the labels to make the relationship 
clearer. In this 'beefed-up' version of geometry, any two 'points' lie on a 
unique 'line' . That is, any two lines through the origin lie in a unique 
plane (figure 1 1 .8(a)). You agree?" 
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"Of course." 
"But in addition, any two 'lines' meet in a unique 'point'. That is, any 

two planes through the origin meet in a line (figure 1 1 .8(b)) . So we have 
exactly the properties required in projective geometry. The projective 
plane is just three-dimensional space, but with a new meaning attached 
to 'point' and 'line'. Geometric, and natural." 

(a) (b) 

11.8 In ordinary 3-space, two lines through the origin determine a unique plane (a) and 
two planes through the origin determine a unique line (b). Each line cuts the sphere 
(shaded) in a pair of opposite points; each plane cuts it in a great circle. The projective plane 
can thus be interpreted either as the geometry of lines and planes through the origin in 
3-space, or as that of point-pairs and great circles on a sphere. 

''Natural?" 
"Natural enough for a mathematician." 
"But how can you call three-dimensional space a plane?" asked Elena. 
"Because we've increased all the dimensions by one." I reminded her. 

"If a 'line' is a plane through the origin, then a 'plane' has to correspond 
to a three-dimensional object - which must be the whole space." 

"Not only that: you can show that this new version of the projective 
plane is just the original one in disguise." 

"How? It doesn't look like it to me!" 
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"It's a rather heavy disguise. Imagine a sphere centred at the origin. lt 
cuts every 'point' of the projective plane - that is, every line through its 
centre - in a pair of opposite points. It cuts every 'line' - plane through 
its centre- in a great circle. So the geometry of the projective plane is just 
the geometry of the sphere, with 'point' interpreted as a pair of antipodal 
points, and 'line' interpreted as great circle." 

"Fine. But we've got pairs of points, not individual ones." 
''That doesn't really matter," I said. "Not in the abstract. But we can 

overcome that by thinking just of a hemisphere. That cuts most pairs 
down to single points." 

"Except points on the boundary of the hemisphere." 
"Precisely, Enrico! Well done! So wehaveto identify opposite pointson 

the boundary of the hemisphere (figure 11 .  9). Just as our first model of the 
projective plane identified opposite points on the boundary of a disc. 

11 .9 To obtain single points rather than point pairs we can restrict attention to a 
hemisphere, obtaining a geometry of points and great semicircles. But opposite points on 
the boundary must still be identified. This version of the projective plane is therefore a 
topological distortion of figure 1 1 .4. 

"And, topologically speaking, a hemisphere is a disc. It's just got a bit 
bent. So the new model is just the old one in disguise." 

"Bravo!" They applauded. I suspected irony, but I playeu along and 
gave a low bow. 
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"Bis!" yelled Elena, meaning "encore", getting carried away by the 
spirit of things. Enrico tried to shut her up but the damage was done. I 
began to perform my encore. 

"There are lots of different ways to visualize the projective plane," I 
said. "Dozens." (Enrico groaned.) "One of them was discovered by Jacob 
Steiner. Well, sort of. The year was 1844, and by coincidence he was 
visiting Rome, so he called it the Roman surface (figure 1 1 .10). It's one of 
the few mathematical objects named after a place. In actual fact, he 
constructed it in a highly complicated fashion using pure geometry. 
Now, using coordinates, every surface is determined by some equation. 
For instance, a sphere of radius 1 centred at the origin has equation 
/ + y

2 
+ z

2 
= 1 in coordinates (x,y,z). Steiner was a wonderful geometer 

but hopeless at algebra, and he couldn't work out the equation for his 
surface. A year before Steiner died he asked Karl Weierstrass to work the 
equation out. Weierstrass, a much more versatile mathematician than 
Steiner, found the equation with no trouble at all·. 

2 2  2 2  2 2  
x y + y z + z x + xyz = 0. 

It's beautifully symmetric, just like the surface." 
Enrico and Elena admired the elegant symmetry of their native city's 

surface. 

11 .10 Steiner 's Roman surface: six cross-caps joined together. It has the same symmetry 
as a tetrahedron. 
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"The Klein bottle has an equation, too," I said. "It's formed by the 
points (x,y,z) such that 

2 2 2 ( 2 2 2 2 2) 
(x + y + z + 2y - 1) (x + y + z - 2y - 1) - 8z + 

2 2 2 
16xz (x + y + z - 2y - 1) = 0. 

It's not as symmetric; but then neither is the surface. 
"The Roman surface is just a projective plane in yet another disguise. 

But it has a flaw." They shook their heads in horror at this news. "Like the 
cross-cap, it has (several) singular points. Those are places where it doesn't 
just cross through itself in two or more separate sheets, but the sheets get 
all tangled up and merge together. Like the top of the cross-cap. The Klein 
bottle, on the other hand, has no singular points. It crosses itself, but in 
clearly defined separate sheets. Maybe that's why most people don't 
realize that the projective plane is really a simpler example of a one-sided 
surface. It's a lot easier to draw a convincing Klein bottle." 

"It's a snappier name, too. Someone did a better public relations job." 
"Could be. For a long time it was actually an unsolved question 

whether the projective plane can be arranged in three-dimensional space 
so that it has no singular points - only self-intersections. In fact David 
Hilbert, one of the greatest mathematicians who ever lived, conjectured 
that it can't be done - and told his student Werner Boy to prove it. Boy, 
like any good research student, followed his own nose and disproved 
Hilbert's conjecture instead, producing what is now known as Boy's 
surface (figure 1 1 .11) .  That's yet another incarnation of the projective 
plane." 

"It looks sort of funny," said Elena. 
''Yes. It's a bit like three doughnuts stuck together, but the dough of 

each doughnut runs into the hole in the next. There's a polyhedral model 
for the Boy surface, which you can make from cardboard (figure 11 .12). 
That may give you a better idea of the shape." 

"Does the Boy surface have a pretty equation, like Steiner's?" asked 
Elena. I thought it was a highly intelligent question, and told her so. 

"That's perhaps the greatest curiosity of them all," I said. "Until very 
recently, nobody knew the answer. They could draw the surface, they 
could study its topology, but they couldn't decide whether or not it had 
a polynomial equation, pretty or not. In 1978 Bernard Morin, a French 
geometer who, incidentally, is blind, found equations for a projective 
plane without singularities but nobody could prove it was the same as 
the Boy surface. In 1985 J. F. Hughes found an empirical formula using 
polynomials of degree 8. But both formulas are parametrizations; that is, 
instead of an equation 'something inx,y,z =0' they take the form 'x, y, and 
z = certain expressions in some other variables'. In principle you can 
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11 .11 Boy 's surface, topologically equivalent to the projective plane and having no 
singular points. Hilbert conjectured that no such surface exists. The self-intersections 
(solid lines) form a "bouquet" of three loops joined at a common point. These two very 
different views are topologically equivalent. In each, sections of the surface have been cut 
away to reveal the interior. 



All Parallels Lead to Rome 169 

1 1 .12  To make a polyhedral model of Boy 's surface, cut this shape from thin card and 
join the edges with the same numbers. 

eliminate the new variables and get some hugely complicated equation 
in x, y, and z, but I don't think anybody has done it. 

"In 1986 Fran<;ois Apery found an explicit equation for the Boy surface 
(box 1 1 .1), a polynomial of the sixth degree. It was derived by deforming 
Steiner's Roman surface to get rid of its singularities. Sounds like a simple 
trick, but nobody had been able to make it work before." 

"Amazing," said Enrico. 

Box 1 1 . 1 Franc;ois Apery's Equation for the Boy surface 

( )3 3 ( )2 2 ( 2 2 2) 64 1 - z z - 48 1 - z z 3x + 3y + 2z + [ ( 2 2)2 2 ( 2 2) ! ( 2 2) 1 2 (1 - z) z  27 x + y  - 24z x + y  + 36 �; 2yz y - 3x 

4] ( 2 2 2) [ ( 2 2)2 2 ( 2 2) +4z + 9x + 9y - 2z -81 x + y  - 72z x + y 

+108 �2xz (x2 - 3l) + 4z4] = 0 
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"There's a lot more," I said. "If you've got time, I can tell you how the 
Boy surface can be used to tum a sphere inside out. The story involves 
Morin, and a French physicist called Jean-Pierre Petit, which is really 
rather a coincidence seeing that 'klein' in German means 'small', and so 
does 'petit' in . . .  " 

But my audience was disappearing down the Via XX Settembre, 
heading rapidly and determinedly towards the point at infinity . . .  

Next time I meet them, I'm going to tell them about finite projective 
planes. 
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The Twelve Games of Christmas 

It was Christmas afternoon at Baffleham Hall. The turkey was long 
dismembered, the Christmas pudding devoured. Lord Roderick of 
Baffleham and his eleven guests were in a relaxed mood, singing the 
traditional songs . . .  

. . . Three Frinch hins, 
Two titled doves, 
And a pahtri-idge in a peer-tree. 
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The vigorous delivery compensated for the imperfections of pitch and 
the upper-class accent. 

"Oh! Zat is most curieux," exclaimed the Comtesse de Malfamee. 
"I 'ave never 'ear 'im as a Christmas song. But in la belle France we 'ave 
a traditional song like zat, about ze monz of ze year . . .  

Au premier mois de 1' annee, 
Que donn'rai-je a rna mie? 
Une perdriole, 
Que va, que vient, que vole 
Une perdriole 
Que vole dans le vent. 

"And he ends wiz: 

Au douzieme mois de 1' annee, 
Que donn'rai-je a rna mie? 
Douze coqs chantant, 
Onze ortolans, 
Dix pigeons blancs, 
Neuf boeufs comus, 
Huit moutons tondus, 
Sept chiens courants, 
Six lievres aux champs, 
Cinq lapins courant par terre, 
Quat' canards volant en l'air, 
Trois ramiers de bois, 
Deux tourterelles, 
Une perdriole, 
Que va, que vient, que vole 
Une perdriole 
Que vole dans le vent." 

On the twelfth month of the year, 
What shall I give to my lady-love? 
Twelve singing cocks, 
Eleven ortolans [buntings], 
Ten white pigeons, 
Nine homed bulls, 
Eight sheared sheep, 
Seven running dogs, 
Six hares in the fields, 
Five rabbits running on the ground, 
Four ducks flying in the air, 
Three wood pigeons, 
Two turtle doves, 
A partridge, 
Who goes, who comes, who flies, 
A partridge, 
Who flies in the wind. 

The others applauded enthusiastically, and the Comtesse gave a little 
curtsy. "We call zis song La Perdriole." 

"I take it a perdriole is a partridge," said the Duke of Balmuddle. 
"Mais oui," said the Comtesse. 
"But no pear-tree. How extraordinarily odd," chimed in the Duke's 

second son, Edmund. "There must be some relationship . . .  " He hauled 
out a copy of the Oxford English Dictionary. "Partridge. Middle English 
pertrich, partrich . . .  from Old French perdriz, pertris . . .  My word! That 
sounds just like pear-tree! Look, father - the Old French word for 
'partridge' is pronounced 'pear-tree' !" 
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"Sounds to me," said Lady Chatterrnere, "as if someone got the words 
confused. As I recall, there's some question about what 'calling birds' 
are . . .  Or whether it was 'colly birds', whatever those might be." 

"Perhaps it should be four collie dogs," said Annabel, her daughter, 
and giggled. 

"'Colly' . . .  Obsolete word for 'blackbird'," said Edmund, thumbing 
through the dictionary. 

"Oh, shut up, Edmund!" said Annabel's annoying small brother, 
Charles. "Don't be such a bighead!" 

"What I've never understood," said the elderly Baron Goutsfoot, "is 
why the damn' song . . .  " 

"Grandfather! Language!" 
"Sorry, Hilda m' dear . . .  Why the confounded song starts with birds 

and animals and suchlike, but ends up with lords and ladies and 
drummers. Damn' inconsistent, if you ask me. Beggin' your pardon, 
Hilda m' dear." 

"Ze words to ze French song differ from one region to anuzzer," said 
the Comtesse's daughter, Esmeralde, who was studying poetry at the 
Sorbonne. "In ze earliest version, from ze sixteenz century, it begins wiz 
'Douze chevaliers, onze demoiselles . . .  ' but zen it goes back to animals. 
And zere is a Canadian version wiz ze days of ze year, which goes on and 
on and on . . .  Zey sing it to put children to sleep." 

"I've always wondered," put in Orville, Hilda'scurrent beau, up from 
Oxford for the weekend, "what the five gold rings were for." 

"To string through your nose, darling," said Hilda. 
"Children, children," said Lord Roderick. "Cease your bickering! For 

now is the time for the oldest tradition of Baffleham Hall- the Christmas 
puzzles! I hope you've all come prepared?" There were nods all round 
the table, except for Uncle Crispin, who had dozed off. "And, seeing as 
there are twelve of us, I suggest we try to play a puzzle version of the 
Twelve Days of Christmas! And I warn you, by long tradition, at least one 
puzzle is really hard . . .  But of course I'm not saying which. 

"You first, Edmund." 

Twelve drummers drumming . . .  

"Gosh, thanks, Roddy . . .  " said Edmund, who had prepared a problem 
about card players. "Urn . . .  Well, this puzzle is about - er - twelve 
drummers." He paused. 

"Go on, Edmund." 
"Er. Gosh . . .  Well, you may not know this, but I used to be in the 

Guards." 
"Yes, he was head guardener," said Hilda sweetly. 
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"No, the Relief Airborne Footguards. You must have heard of the 
RAF! Anyway, I was in the regimental band . . .  " 

"The regiment was OK, it was just Edmund who was banned . . .  " 
"No, he was an aide to the Drum Major. They called him the band­

aide." 
"Thank you, Annabel. But, speaking of drums, there was a regimental 

tradition, the drumming contest. There were several events, actually; the 
singles, the doubles . . .  " 

"And the mixed doubles." 
"You may scoff. The doubles were a sort of league. There were twelve 

drummers altogether and they formed up into pairs. The pairs weren't 
fixed, of course: the idea was to find the best pair. The contest lasted 
eleven days . . .  " 

"Well, there's a lot of variety in drumming, got to give people a chance 
to show what they can . . .  " 

"No, we didn't play all day. There was just one round every day, held 
before reveille so as not to disturb anyone. You see, with twelve drummers 
there are sixty-six different pairs. Each round consisted of three separate 
contests between two pairs of drummers, because of course that makes 
twelve drummers altogether. So that's six pairs per day, and six into 
sixty-six goes eleven times." 

Annabel clapped with heavy irony. 
"On any given day all twelve drummers took part. And, tomakeitfair, 

every drummer had every other drummer exactly once as a partner, and 
exactly twice as an opponent. 

"The puzzle is . . .  " 
" . . .  why on earth they bothered." 
"No, Charles, and take your paws out of the trifle. No, the puzzle is: 

how did they do it?" 

Eleven pipers piping . . .  

"You probably won't know this," Hilda began. "But, like Edmund, I have 
a musical past. I used to be a flautist in the London Philharmonic 
Orchestra." 

"Actually," said Annabel in a stage whisper, "it was the Dagenham 
Girl Pipers, and she flauted everything she had." 

Hilda sniffed. "I left after a dispute. They treated me most unfairly. 
There were eleven flautists, you see, and one day a consignment of new 
flutes arrived. The first flautist took one eleventh of the flutes plus one 
eleventh of a flute . . .  " 

"How on earth can you play one eleventh of a flute?" 
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"Well, no flutes actually got cut up, you understand. The next took one 
tenth of the remainder, plus one tenth of a flute. Then the next took one 
ninth of the remainder plus one ninth of a flute, and so on in tum . . .  The 
next to last took half of what remained plus half a flute. I was the last. 
When I saw how many they'd left me, I got annoyed, and resigned on the 
spot." 

"Why?" 
"Everyone else got twice as many flutes as me." 
"How terrible! But what's the puzzle, dear?" 
"How many flutes were there in the consignment?" 

Ten lords a-leaping . . .  

Baron Gouts foot levered himself out of a Queen Anne chair and grumped 
his way to the writing-desk, where he borrowed a piece of paper and 
sketched a diagram (figure 12.1). It showed twenty-eight circles joined by 
lines to form a triangular network. He rummaged through his pockets, 
found ten gold sovereigns, and placed them on the central ten dots. 

12.1 How can ten lords leap, leaving only one? 
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"This game symbolizes how decisions are taken at the highest political 
levels," he grunted. "The triangle represents the House of Lords, which 
as we know really runs the country, and the circle in the middle (number 
13, an auspicious number) stands for a seat on the Privy Council." 

"Respectfully, Baron," said Orville, "I must point out that it is not 
possibletostandfora seat. Onemaysit fora seatorstand fora-uh-stand, 
but . . .  " 

"Nonsense! Cousin Dominic stood for a seat in Upward-le-Mobile! 
Lost it to some SMP oick, rotten bad luck, just because the gutter press 
found out about him wanting to sell the common to a cruise missile 
manufacturer . . .  " 

"Thank you, Annabel. Hmmph. The ten sovereigns represent ten 
lords. They take it in turns to leap over any adjacent lord into a vacant 
circle immediately beyond in a straight line. The lord who is jumped over 
has lost influence and is removed. The first puzzle is, how can they do this 
to end up with a single lord sitting on the Privy Council?" 

"It's an awfully complicated way to sit on the privy!" yelled Charles, 
and was cuffed for his pains. 

"Golly," said Edmund. "It's just like solitaire." 
"A bit like solitaire," admitted Baron Goutsfoot in a hurt tone of voice. 

"Edmund, since you're so clever, I'll give you a different puzzle. Three of 
the lords want to become Law Lords, who sit in the outer comers of the 
House. How can the ten lords start in the same position, jump over each 
other following the same rules, and end up with three lords, one in each 
of the three comers (numbers 1, 22, 28)?" 

"Is this the really hard one?" asked Edmund worriedly. 
"Might be. Might not." 

Nine ladies dancing . . .  

"This one's mine!" exclaimed the lecherous but ageing DukeofBalmuddle, 
whose aspirations exceeded his capabilities. "Bring on the dancing­
girls!" 

"Remember, Courtney, that there is a minor present," warned Lady 
Chattermere. "In any case, you are too old for dancing-girls." 

"I'm not a minor, Uncle Courtney!" yelled Charles. "They don't send 
children down the mines any more!" 

"I assure you, madam, that it will be perfectly respectable," said the 
Duke. 

"Bother!" whispered Charles. 
"In Castle Balmuddle there is a dance which goes back to the days of 

Clan MacCroney, when the Great Cameron Dunrovin himself took the 
pipes. Ah, those were great days for Scotland! 'Tis called the Fichin Reel. 
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Nine ladies arrange themselves in a circle. Three wear green bonnets, 
three red bonnets, and three blue bonnets. 

''The ladies take it in turns to dance in pairs in the circle while the 
others twirl on the spot. After four pairs have danced, the remaining lady 
dances in the circle on her own. 

''The pattern of the dance is that the first pair determine the order of 
all the others, in this manner. If you remove a pair of ladies from a circle 
you create two arcs of adjoining ladies-unless of course the original two 
are adjacent, in which case only one arc is left. If a pair of ladies with the 
same colour bonnet dance, then the next pair is formed by the ladies at 
the ends of the longer arc left in the circle. If a pair of ladies with different 
coloured bonnets dance, then the next pair is formed from the two ladies 
at the ends of the shorter arc. If an arc with just one lady in it is created, 
she must dance alone. 

''The first pair is chosen freely, but thereafter the stated rules apply. 
The problem is how to arrange the ladies so that all nine dance, four in 
pairs and one alone. I must add that Cameron Dunrovin himself decreed 
that no three ladies with identical coloured bonnets may stand next to 
each other in the circle, but that somewhere in the circle two ladies with 
red bonnets must stand together, two with blue, and two with green." 

Eight maids a-milking . . .  

"In ze milkshed," explained Esmeralde, "zere were eight maids, milking 
eight cows, sitting in a circle. Clockwise round ze circle ze maids 'ad 
buckets zat could ' old exactly 3, 4, 5, 6, 7, 8, 9, 1 0 - 'ow you say, gallons? 
-of milk. When zey 'ave finish milking, buckets 4, 5, 6, and 9 are full, and 
ze udders are empty." 

"Well, they would be if the maids had finished," said Edmund. "Oh! 
Wait, you mean the others!" 

"Zat is what I say, no?" said Esmeralde, perplexed. "Now ze maids 
must return to ze farm wiz ze same amount each, zat is, three gallons in 
each bucket. Uzzerwise ze farmer 'e will be vair' angry zat some of ze 
maids are lazy. 

"Zey can pour milk from any bucket into zose adjacent around ze 
circle. So 'ow can ze milkmaids share out ze milk, so zat each bucket 
contain exactly three gallons?" 

Seven swans a-swimming . . .  

"Well," said Orville, "I hadn't actually planned to do one about swans, 
you know . . .  Had a real mindboggler about ducks, though . . .  " 



178 Game, Set, and Math 

"Shut up, Orville!" screamed Charles. "It's my tum anyway! You're 
supposed to do the French hens!" He looked around him at the assembled 
company. "Though why it's three French hens I can't imagine," he said. 
The Comtesse and her daughter coloured but pretended not to notice the 
insult. 

"You may have your tum, Charles," said Lady Chattermere. "And if 
you say another word out of place you will spend the rest of Christmas 
in your room." 

"Yes, mother. Sorry, mother. Now, there were seven swans who lived 
in eight lakes connected by canals, like this (figure 12.2). They liked to sun 
themselves on the banks, but when the gamekeeper came to feed them 
they would all jump into the water. 

12.2 Swan lakes. 

"One after the other, each swan jumped into an empty lake and then 
swam along a canal to the next lake, which was also empty. 

"How did they do it?" 
"That's a stupid puzzle," said Orville. "For a start, the canals cross." 
"Those are aqueducks," said Charles. 
"Aqueducts, you little squirt. Anyway, you just start here, and move 

the first swan under the bridge to . . .  " 
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"But there was a poacher hiding under the bridge," said Charles. 
"And the swans knew he'd catch them and eat them for Christmas 
dinner, so they didn't go that way." 

Six geese a-laying . . .  

With a lot of effort they managed to wake up Uncle Crispin and explain 
to him the rules of the Twelve Games of Christmas. 

"Where have we got to, then?" 
"Six geese a-laying." 
"Ah, geese . . .  Six geese . . .  Right! This is a really hard one, all about 

a goose-girl called Bumps." 
"Zat is a strange name," said Esmeralde. 
"Goose-bumps," explained Crispin. 
"In all the right places, I bet," said Orville with a leer. 
"Shut up, Orville!" said Charles. Orville raised his fist; Charles stuck 

his tongue out and hid behind a suit of armour. 
''The goose-girl had six geese, and she was taking her basket of eggs 

back to the farm," said Crispin. "On the way she met the shepherd-boy, 
who asked how many eggs her geese had laid." 

"'Less than fifty, and prime,' said she." 
"'I mean the exact number,' said the shepherd-boy." 
"In answer, the girl produced a cube, with the names of her geese 

written on the faces, numbered just like an ordinary die but with goose­
eggs instead of spots (figure 12.3). 'We'll play a game,' she said. 'You roll 
the die first, and whatever number comes up, you take that number of 
eggs. After that we take it in turns to give the die a quarter tum to a new 
face, again taking that number of eggs. Whoever is first unable to take the 
correct number of eggs, because there are not enough left, loses.'" 

''The shepherd-boy said he'd understood, and rolled the die." 
"'You've lost,' said the goose-girl, who was a perfect logician." 
''The shepherd-boy said that he should have thrown one higher - or 

maybe one lower." 
"'You'd still have lost,' she told him. 'But by proper play you could 

have won if you'd thrown anything else.' " 
Crispin stopped, a smile on his face, and sat down again. 
"Is that it?" asked Annabel. 
"What's the puzzle?" said the Duke of Balmuddle. 
"Woops, forgot that bit," said Crispin. "How many eggs were there in 

the basket, and what did the shepherd-boy throw?" 
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' 

12.3 The goose-girl 's die, with eggs for spots. 

Five gold rings . . .  

"My tum now, Roderick," said Lady Chatterrnere firmly. She delved into 
her purse and brought forth a strange piece of jewellery. "Heirloom, been 
in the family since the days of Lord Jocelyn, who was carrying five gold 
rings and twenty diamonds in his pack when he was hit in the chest by 
shrapnel during the Battle of Baghdad ." 

"Hit in the chest? That sounds nasty." 
"It was! It was the chest containing the regimental pay!" 
"Which consisted of five gold rings and twenty diamonds, perhaps?" 
"Good Lord, no! There are plenty of ways to fiddle regimental accounts 

without actually appropriating goods! A clever quartermaster can make 
a for- . . .  But that isn't really important. Anyway, when the battle was 
over Lord Jocelyn wanted the rings to be fashioned into a . . .  sort of 
brooch. When the jeweller heard the instructions, he thought maybe 
Lord Jocelyn had been hit in the head. 

"As you can see, there are five gold rings. 
"'I want all five rings to be joined together,' Lord Jocelyn told him. 

'Like this (figure 12.4), and set with diamonds where they cross.' 
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'"Easy,' said the jeweller. 'I mean- that will be very expensive, but I'm 
sure I can do a perfect job.' 

"'Good,' said Lord Jocelyn. 'But there's an extra condition. There are 
twenty diamonds altogether, and it so happens that their weights are 
1 carat, 2 carats, . . .  and so on up to 20 carats. There are eight diamonds 
on each ring. They must be arranged so that the total number of carats on 
each ring is the same.' 

"The jeweller managed, eventually, hence the existence of the heirloom. 
But can you think of a suitable arrangement?" 
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Four calling birds . . .  

"As Edmund explained so grippingly," said Annabel, "they are in fact 
four colly birds, that is, blackbirds. Four blackbirds were sitting on 
mushrooms." (Figure 12.5) 

7 3 

6 4 

5 

~ 
12.5 Four colly birds. 

"Two of them are white, Annabel," Edmund pointed out. _ 
"Two blackbirds and two albino blackbirds were sitting on 

mushrooms," Annabel continued. 
"So called because there isn't mush room for a bird to sit on them," put 

in Charles. 
"Quiet, brat. You've heard of a fairy ring? Well, this fairy ring 

consisted of eight mushrooms. The two blackbirds and the two albinos 
were sitting on every alternate mushroom, with the blackbirds to the 
north and the albinos to the south. 
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"They wanted to change places so that the two blackbirds were on the 
mushrooms occupied by the albinos, and vice versa. But to avoid 
offending the fairies who had built the ring, they were only allowed to do 
this by moving round exactly three mushrooms at a time, either clockwise 
or anticlockwise. Three being a magic number, you understand. 

"How did they do it?" 

Three French hens . . .  

"This puzzle concerns triplets called Nicole, Nathalie, and Nancy." 
"It's supposed to be about hens," said Charles. 
"Three French N's," Orville explained. 
"Nancy isn't a French name!" 
''Yes it is, there's a town called Nancy just west of Strasbourg. These 

young ladies obeyed one immutable rule. Nicole alternately lied and told 
the truth, Nathalie always told the truth, and Nancy always lied. 
Unfortunately they all looked exactly the same and no one could ever tell 
them apart. 

"One day the three French N' s were sitting next to each other on the 
step of their house . . .  " 

"The N-house, no doubt," said Charles in a tone of disgust. 
"The following conversation ensued. Here R is the right-hand lady, M 

the middle lady, and L the left-hand lady. 

L [to M]: You're a liar. 
M: No I'm not! 
R: You're both liars. 
L: That was a lie! 
M: That was a lie! 
R: That was a lie! 

Which French N is which?" 

Two turtle doves • . .  

"It is a little known fact," said the Comtesse de Malfamee, "zat some birds 
is vair' good at arizmetic. One day zere was two turtle dove sitting on a 
branch. 'I am sinking of a number under one 'undred,' coo one dove. 'Me 
too,' reply ze uzzer. 'Tell me your number,' 'e adds. She does. 'E tell 'er 
'is, remarking as ' e do so zat 'is number and ' ers 'ave no digits in common. 
'Coo, zat is remarkable,' she say. 'If we add our numbers and square ze 
result, zen we get a four-digit number ooze first two digits are your 
number and ze last two digits are mine.' 'You mean, like 30 plus 25 is 55 
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12.6 Which pear is the partridge? 
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andifzatissquarezenitmake3025?' askzegentilhommedove. 'Oui,' she 
say, 'but not zose numbers.' Zo what was ze numbers?" 

"I suppose," the Comtesse added, "zat is why zey are call turtle 
doves." 

"Eh?" asked Lord Roderick, perplexed. 
"Because zey calculate ze turtle before zey square it!" 

And a partridge in a pear-tree . . .  

Lord Roderick of Baffleham put down his cigar and got to his feet. '1t is 
the host's prerogative to bring this traditional event to a close. In the 
garden of Baffleham Hall," he said ponderously, "there is a pear-tree." 

"Hundreds, I imagine, sir" said Orville. 
"Hrrumph, yes. Well, I do have one particular pear-tree in mind, 

Orville. Now one of the pears in this tree (figure 12.6) is actually a 
partridge." 

"Oh, jolly good, sir! Fat little blighter with no legs, is it?" 
''The partridge, Orville, is partially concealed by neighbouring pears. 

It is hiding from a hunter. Now, to get into the tree, the partridge started 
at the large pear dangling from the lowest branch, and then passed from 
pear to pear in some order." 

"Ah," said Crispin. "It's a puzzle about ordered pears." 
"Yes, Crispin, so good of you to point that out. Now in fact, the 

partridge crossed each boundary between adjacent pears exactly once, 
until it finally hid itself." 

"Cunning little devil! Dashed good show, sir!" 
"Hrrumph. Well, what I want to know is . . .  which pear is the partridge?" 

ANSWERS 

12. Let the drummers be denoted by the letters A-L. Then on the 
eleven days, one possible arrangement is: 

AB - IL 
AC - JB 
AD - KC 
AE - LD 
AF - BE 
AG - CF 
AH - DG 
AI - EH 
AJ - FI 
AK - GJ 
AL - HK 

EJ - GK 
FK - HL 
GL - IB 
HB - JC 
IC - KD 
JD - LE 
KE - BF 
LF - CG 
BG - DH 
CH - EI 
01 - FJ 

FH - CD 
GI - DE 
HJ - EF 
IK - FG 
JL - GH 
KB - HI 
LC - IJ 
BD - JK 
CE - KL 
OF - LB 
EG - BC 
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1 1 .  Twenty-one. Everyone else took two, Hilda got one. 
10. Number the cells as in figure 12.7. Then the answers are: 

(a) 13 --+4, 17--+ 8, 14 --+ 25, 25 --+ 12, 5 --+  14,20 --+ 9, 12 --+5, 4  --+6, 6  --+ 13. 
(b) Impossible. Colour cells 1, 4, 6, 11 ,  13, 15, 22, 24, 26, 28. Then 
anything starting on a coloured circle finishes on one, and vice versa. The 
three comer cells are coloured - but only one lord, the central one, starts 
on a coloured circle. 

9. G G B B R R G R B, starting at G G. There are others. 
8. Here's one possibility. The arrows show the movement of milk 

between adjacent buckets. 

bucket 3 4 5 

start 

finish 

6 7 8 9 10 

7. Number the lakes clockwise from 1 to 8 as in figure 12.8. Then the 
successive moves are 6 --+  1, 3 --+  6, 8 --+  3, 5 --+  8, 2 --+  5, 7 --+  2, 4 --+  7. Each 
swan swims towards the lake that the previous one jumped into. 

6. Forty-three eggs, and he threw a 3. This is the "very difficult" 
puzzle that Lord Roderick promised. It depends on a general analysis of 
the winning strategy, when the total to aim for is arbitrary. The strategy 
can be found by working back from the end position, and is shown in the 
next table: this gives the winning move(s) for each combination of current 
total and face ofthe die. "L" means a losing position- whatever move you 
make, the opponent can then win with perfect play. 
The result is a pattern that repeats when the total increases by 9, with a 
few exceptions at the beginning. Thus, for totals larger than 7, the 
strategydependsonlyonthedigital rootofthetotal (thesumofthedigits, 
repeated until the answer is in the range 1-9). The goose-girl, being a 



12.7 Ten lords a-leaping. 

total 1 or 6 

1 L 
2 2 
3 3 
4 4 
5 5 
6 3 
7 2,3,4 
8 4 
9 L 

10 5 
11  2,3 
12 3,4 
13 4 
14 5 
15 3 
16 2,3,4 
17 onwards: repeat from 8 
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face showing 

2 or 5 3 or 4 

1 1 
1 1,2 
3 L 
4 L 
L 5 
6,3 6 
6,3,4 6,2 
4 L 
L L 
1 1,5 
3 2 
3,4 L 
4 L 
L 5 
6,3 6 
3,4 2 
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12.8 Seven swans a-swimming. 

perfect logician, worked this pattern out instantly. We are told that the 
boy's throw, the number above it, and the one below all lead to a losing 
position. The strategy pattern shows that the only three consecutive 
throws that can lead to a losing position are 2, 3, 4, so the boy threw the 
middle one: 3. The numbers of eggs for which exactly 2, 3, 4 are losing 
throws are those with a digital root of 7, with the exception of 7 itself, for 
which 6 is also a losing throw. The only other prime less than 50 with 
digital root 7 is 43. So there were forty-three eggs. 

5. See figure 12.9. 
4. If the mushrooms are numbered as in figure 12.5, one solution is: 

8 --+  3, 2 --+  5, 5 --+  8, 4 --+  7, 7 --+  2, 2 --+  5, 6 --+  1,  1 --+ 4, 4 --+  7, 7 --+  2, 3--+ 6, 
6 --+  1, 1 --+ 4, 8 --+  3, 3 --+ 6, 5 --+  8. 

3. There are six possible arrangements. By trial and error, we find 
that Nathalie is on the left,Nancyis in the middle, andNicoleon the right. 

2. 98 and 01. 
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1. Whenever the partridge enters and leaves the space occupied by 
a pear, it crosses two boundaries between adjacent pears. Hence, except 
at the ends of the journey, each pear must touch an even number of other 
pears. Therefore the pears at the ends of the journey are those that touch 
an odd number. The pear from which the partridge starts touches one 
other pear. The only pear in the tree, apart from this, that touches an odd 
number of pears, is the one shown in figure 12.10, with three neighbours. 
The figure also shows one possible route. 
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12.10 The partridge in the pear-tree. 
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